Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 122 results
Advanced filters: Author: C Cibulskis Clear advanced filters
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In this study, the authors present an analysis of the malaria burden in sub-Saharan Africa between 2000 and 2015, and quantify the effects of the interventions that have been implemented to combat the disease; they find that the prevalence of Plasmodium falciparum infection has been reduced by 50% since 2000 and the incidence of clinical disease by 40%, and that interventions have averted approximately 663 million clinical cases since 2000, with insecticide-treated bed nets being the largest contributor.

    • S. Bhatt
    • D. J. Weiss
    • P. W. Gething
    Research
    Nature
    Volume: 526, P: 207-211
  • The oncogenic events driving indolent chronic lymphocytic leukaemia are relatively unknown. Here, the authors perform whole genome sequencing on 30 such tumours and identify recurrent mutations in IGLL5and two activation induced cytidine deaminase signatures that are operative at different stages of CLL evolution.

    • S. Kasar
    • J. Kim
    • J. R. Brown
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The Cancer Genome Atlas Research Network report integrated genomic and molecular analyses of 164 squamous cell carcinomas and adenocarcinomas of the oesophagus; they find genomic and molecular features that differentiate squamous and adenocarcinomas of the oesophagus, and strong similarities between oesophageal adenocarcinomas and the chromosomally unstable variant of gastric adenocarcinoma, suggesting that gastroesophageal adenocarcinoma is a single disease entity.

    • Jihun Kim
    • Reanne Bowlby
    • Jiashan Zhang
    ResearchOpen Access
    Nature
    Volume: 541, P: 169-175
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Reduction in malaria transmission has changed the age pattern of malaria incidence. This study brings insights into the changes in age distributions of clinical malaria across Africa, with importance for improving within-population targeting of malaria control interventions.

    • Jamie T. Griffin
    • Neil M. Ferguson
    • Azra C. Ghani
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-10
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The accumulation of somatic genetic variation in clonal species leads to heterogeneity among autonomous modules (ramets). Ultra-deep resequencing of single ramets in a clonal seagrass shows somatic genetic drift resulting in genetically differentiated ramets that are targets of selection.

    • Lei Yu
    • Christoffer Boström
    • Thorsten B. H. Reusch
    Research
    Nature Ecology & Evolution
    Volume: 4, P: 952-962
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Elliot Stieglitz, Mignon Loh and colleagues report the whole-exome sequencing of diagnostic and relapsed samples from patients with juvenile myelomonocytic leukemia. They identify new recurrent mutations for this disease and find that the number of somatic alterations present at diagnosis may be predictive of clinical outcome.

    • Elliot Stieglitz
    • Amaro N Taylor-Weiner
    • Mignon L Loh
    Research
    Nature Genetics
    Volume: 47, P: 1326-1333
  • The goal of the 1000 Genomes Project is to provide in-depth information on variation in human genome sequences. In the pilot phase reported here, different strategies for genome-wide sequencing, using high-throughput sequencing platforms, were developed and compared. The resulting data set includes more than 95% of the currently accessible variants found in any individual, and can be used to inform association and functional studies.

    • Richard M. Durbin
    • David Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 467, P: 1061-1073
  • The Cancer Genome Atlas Research Network reports an integrative analysis of more than 400 samples of clear cell renal cell carcinoma based on genomic, DNA methylation, RNA and proteomic characterisation; frequent mutations were identified in the PI(3)K/AKT pathway, suggesting this pathway might be a potential therapeutic target, among the findings is also a demonstration of metabolic remodelling which correlates with tumour stage and severity.

    • Chad J. Creighton
    • Margaret Morgan
    • Heidi J. Sofia.
    ResearchOpen Access
    Nature
    Volume: 499, P: 43-49
  • Tumors vary in their ratio of normal to cancerous cells and in their genomic copy number. Carter et al. describe an analytic method for inferring the purity and ploidy of a tumor sample, enabling longitudinal studies of subclonal mutations and tumor evolution.

    • Scott L Carter
    • Kristian Cibulskis
    • Gad Getz
    Research
    Nature Biotechnology
    Volume: 30, P: 413-421
  • A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.

    • Konrad J. Karczewski
    • Laurent C. Francioli
    • Daniel G. MacArthur
    ResearchOpen Access
    Nature
    Volume: 581, P: 434-443
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Levi Garraway and colleagues report the identification of somatic mutations of RNF43, which encodes an E3 ubiquitin ligase that negatively regulates Wnt signaling, in over 18% of colorectal adenocarcinomas and endometrial carcinomas.

    • Marios Giannakis
    • Eran Hodis
    • Levi A Garraway
    Research
    Nature Genetics
    Volume: 46, P: 1264-1266
  • This paper reports one of the largest breast cancer whole-exome and whole-genome sequencing efforts so far, identifying previously unknown recurrent mutations in CBFB, deletions of RUNX1 and recurrent MAGI1AKT3 fusion; the fusion suggests that the use of ATP-competitive AKT inhibitors should be evaluated in clinical trials.

    • Shantanu Banerji
    • Kristian Cibulskis
    • Matthew Meyerson
    ResearchOpen Access
    Nature
    Volume: 486, P: 405-409
  • Whole-genome sequencing of 25 metastatic melanomas and matched germline DNA in humans reveals that the highest mutation load is associated with chronic sun exposure, and that the PREX2 gene is mutated in approximately 14 per cent of cases

    • Michael F. Berger
    • Eran Hodis
    • Levi A. Garraway
    ResearchOpen Access
    Nature
    Volume: 485, P: 502-506
  • Matthew Meyerson and colleagues report whole-exome and whole-genome sequencing of 55 small intestine neuroendocrine tumors. They identify recurrent somatic mutations in CDKN1B, implicating cell cycle dysregulation in the pathogenesis of these tumors.

    • Joshua M Francis
    • Adam Kiezun
    • Matthew Meyerson
    Research
    Nature Genetics
    Volume: 45, P: 1483-1486
  • A genomic constraint map for the human genome constructed using data from 76,156 human genomes from the Genome Aggregation Database shows that non-coding constrained regions are enriched for regulatory elements and variants associated with complex diseases and traits.

    • Siwei Chen
    • Laurent C. Francioli
    • Konrad J. Karczewski
    Research
    Nature
    Volume: 625, P: 92-100
  • The Cancer Genome Atlas reports on molecular evaluation of 295 primary gastric adenocarcinomas and proposes a new classification of gastric cancers into 4 subtypes, which should help with clinical assessment and trials of targeted therapies.

    • Adam J. Bass
    • Vesteinn Thorsson
    • Jia Liu
    ResearchOpen Access
    Nature
    Volume: 513, P: 202-209
  • A strategy for inferring phase for rare variant pairs is applied to exome sequencing data for 125,748 individuals from the Genome Aggregation Database (gnomAD). This resource will aid interpretation of rare co-occurring variants in the context of recessive disease.

    • Michael H. Guo
    • Laurent C. Francioli
    • Kaitlin E. Samocha
    Research
    Nature Genetics
    Volume: 56, P: 152-161
  • Matthew Meyerson, Ramaswamy Govindan and colleagues examine the exome sequences and copy number profiles of 660 lung adenocarcinoma and 484 lung squamous cell carcinoma tumors. They identify novel significantly mutated genes and amplification peaks and find that around half of the tumors have at least five predicted neoepitopes.

    • Joshua D Campbell
    • Anton Alexandrov
    • Matthew Meyerson
    Research
    Nature Genetics
    Volume: 48, P: 607-616
  • High-depth sequencing of targeted regions in primary breast cancer identifies mutated promoter elements with recurrent mutations at specific and/or nearby bases, suggesting selection of certain non-coding events.

    • Esther Rheinbay
    • Prasanna Parasuraman
    • Gad Getz
    Research
    Nature
    Volume: 547, P: 55-60
  • The Somatic Mosaicism across Human Tissues Network aims to create a reference catalogue of somatic mosaicism across different tissues and cells within individuals.

    • Tim H. H. Coorens
    • Ji Won Oh
    • Yuqing Wang
    Reviews
    Nature
    Volume: 643, P: 47-59
  • With a comprehensive analysis of sequencing data, DNA copy number, gene expression and DNA methylation in a large number of human glioblastomas, The Cancer Genome Atlas project initiative provides a broad overview of the genes and pathways that are altered in this cancer type.

    • Roger McLendon
    • Allan Friedman
    • Elizabeth Thomson
    Research
    Nature
    Volume: 455, P: 1061-1068
  • Multiple myeloma, a malignancy of plasma cells, remains incurable and is poorly understood. Using next-generation sequencing of several multiple myeloma genomes reveals that this disease involves mutations of genes involved in protein translation, histone methylation and blood coagulation. The study suggests that BRAF inhibitors should be evaluated in multiple myeloma clinical trials.

    • Michael A. Chapman
    • Michael S. Lawrence
    • Todd R. Golub
    ResearchOpen Access
    Nature
    Volume: 471, P: 467-472
  • Sequencing of over 600 genes in a large collection of lung adenocarcinoma samples provides an overview of somatic mutations and signalling pathways altered in cancer genes in this tumour type.

    • Li Ding
    • Gad Getz
    • Richard K. Wilson
    Research
    Nature
    Volume: 455, P: 1069-1075
  • A large empirical assessment of sequence-resolved structural variants from 14,891 genomes across diverse global populations in the Genome Aggregation Database (gnomAD) provides a reference map for disease-association studies, population genetics, and diagnostic screening.

    • Ryan L. Collins
    • Harrison Brand
    • Michael E. Talkowski
    ResearchOpen Access
    Nature
    Volume: 581, P: 444-451
  • Adam Bass, Gad Getz and colleagues report whole-exome sequencing of 149 esophageal adenocarcinomas (EACs) and whole-genome sequencing of 15 EACs. They identify a mutational signature defined by a high prevalence of A>C transversions, as well as 26 genes mutated at high frequency in EACs.

    • Austin M Dulak
    • Petar Stojanov
    • Adam J Bass
    Research
    Nature Genetics
    Volume: 45, P: 478-486