Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–5 of 5 results
Advanced filters: Author: Carsten Strohmann Clear advanced filters
  • Natural products inspire the development of pseudo-natural products through combinations of fragments of compound classes that are chemically and biologically distinct. Here, the authors report a library of 244 pseudo-natural products, evaluate them in the cell painting essays and identify the phenotypic role of individual fragments.

    • Michael Grigalunas
    • Annina Burhop
    • Herbert Waldmann
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-11
  • Design strategies that possess both biological relevance and structural diversity may lead to compound collections that are enriched in diverse bioactivities. Now a diverse pseudo-natural product design principle has been established to efficiently explore biologically relevant chemical space. Through dearomatization reactions, a compound collection enriched in both structural and biological diversity was rapidly generated.

    • Sukdev Bag
    • Jie Liu
    • Herbert Waldmann
    ResearchOpen Access
    Nature Chemistry
    Volume: 16, P: 945-958
  • Asymmetric systems for catalytic carbohydrate functionalization are mostly limited to chiral copper complexes and organocatalysts. Now, a synergistic chiral Rh(I)- and organoboron-catalysed site-selective functionalization of carbohydrate polyols has been developed, giving stereocontrolled access to biologically relevant arylhydronaphthalene glycosides. Enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution were found to be concomitantly operative.

    • V. U. Bhaskara Rao
    • Caiming Wang
    • Charles C. J. Loh
    ResearchOpen Access
    Nature Chemistry
    Volume: 15, P: 424-435
  • Generating diverse structures with a minimum amount of synthetic effort is an important goal for drug discovery. Here, the authors report a two-phase synthesis for the generation of skeletally diverse small molecules—forming molecular scaffolds and subsequently diversifying each into multiple structures.

    • Miguel Garcia-Castro
    • Lea Kremer
    • Kamal Kumar
    Research
    Nature Communications
    Volume: 6, P: 1-13
  • Synthetic methods that efficiently construct structurally diverse molecular scaffolds are attractive routes to diversely bioactive molecules. Here the authors report a method whereby common starting materials are converted to structurally and functionally diverse products by changing the catalyst ligand.

    • Yen-Chun Lee
    • Sumersing Patil
    • Herbert Waldmann
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-12