Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 237 results
Advanced filters: Author: Christian Gil Clear advanced filters
  • Wastewater-based surveillance tends to focus on specific pathogens. Here, the authors mapped the wastewater virome from 62 cities worldwide to identify over 2,500 viruses, revealing city-specific virome fingerprints and showing that wastewater metagenomics enables early detection of emerging viruses.

    • Nathalie Worp
    • David F. Nieuwenhuijse
    • Miranda de Graaf
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Antimicrobial resistance genes that have been mobilized between bacterial species represent a subset of the naturally occurring resistome. Here, the authors compare the abundance, diversity and geographical patterns of acquired resistance genes with latent resistance genes in global sewage metagenomes.

    • Hannah-Marie Martiny
    • Patrick Munk
    • Frank M. Aarestrup
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Here the authors provide an explanation for 95% of examined predicted loss of function variants found in disease-associated haploinsufficient genes in the Genome Aggregation Database (gnomAD), underscoring the power of the presented analysis to minimize false assignments of disease risk.

    • Sanna Gudmundsson
    • Moriel Singer-Berk
    • Anne O’Donnell-Luria
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The biogeographic origins of Permian terrestrial vertebrates in high-latitude regions remain poorly understood. Here, the authors report an early Permian continental tetrapod fauna from South America in tropical Western Gondwana that constitutes a new biogeographic province with North American affinities.

    • Juan C. Cisneros
    • Claudia Marsicano
    • Rudyard W. Sadleir
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-8
  • Genomic sequencing of 110 human small cell lung cancers identifies genomic signatures including nearly ubiquitous bi-allelic inactivation of TP53 and RB1, a role for NOTCH family genes, and somatic rearrangements that create an oncogenic version of TP73.

    • Julie George
    • Jing Shan Lim
    • Roman K. Thomas
    Research
    Nature
    Volume: 524, P: 47-53
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Results for the final phase of the 1000 Genomes Project are presented including whole-genome sequencing, targeted exome sequencing, and genotyping on high-density SNP arrays for 2,504 individuals across 26 populations, providing a global reference data set to support biomedical genetics.

    • Adam Auton
    • Gonçalo R. Abecasis
    • Gonçalo R. Abecasis
    ResearchOpen Access
    Nature
    Volume: 526, P: 68-74
  • This report from the 1000 Genomes Project describes the genomes of 1,092 individuals from 14 human populations, providing a resource for common and low-frequency variant analysis in individuals from diverse populations; hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites, can be found in each individual.

    • Gil A. McVean
    • David M. Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 491, P: 56-65
  • Using combinations of fluorescently labeled peptide–major histocompatability complex (pMHC) tetramers, T-cell populations with multiple antigen specificities can be monitored in parallel from small samples of human blood. Also in this issue, Newell et al. present a very similar combinatorial encoding method for this purpose.

    • Sine Reker Hadrup
    • Arnold H Bakker
    • Ton N Schumacher
    Research
    Nature Methods
    Volume: 6, P: 520-526
  • Ossenkoppele, Coomans and colleagues analyzed the tau PET data of 12,048 individuals from 42 cohorts worldwide. They found that age, amyloid-β status, presence of an APOE ε4 allele and female sex are key contributors to tau PET positivity, which should aid clinical decision-making and trial designs.

    • Rik Ossenkoppele
    • Emma M. Coomans
    • Oskar Hansson
    ResearchOpen Access
    Nature Neuroscience
    Volume: 28, P: 1610-1621
  • Exome-sequencing analyses of a large cohort of patients with type 2 diabetes and control individuals without diabetes from five ancestries are used to identify gene-level associations of rare variants that are associated with type 2 diabetes.

    • Jason Flannick
    • Josep M. Mercader
    • Michael Boehnke
    ResearchOpen Access
    Nature
    Volume: 570, P: 71-76
  • Multinucleated giant cells characterize granuloma formation in mycobacterial infections. Here the authors identify monocyte precursors with distinct immunological and metabolic properties as a source of the granuloma multinucleated giant cell compartment.

    • Anne Kathrin Lösslein
    • Florens Lohrmann
    • Philipp Henneke
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-22
  • Understanding the emergence, evolution, and transmission of antibiotic resistance genes (ARGs) is essential to combat antimicrobial resistance. Here, Munk et al. analyse ARGs in hundreds of sewage samples from 101 countries and describe regional patterns, diverse genetic environments of common ARGs, and ARG-specific transmission patterns.

    • Patrick Munk
    • Christian Brinch
    • Frank M. Aarestrup
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • Sequencing data from two large-scale studies show that most of the genetic variation influencing the risk of type 2 diabetes involves common alleles and is found in regions previously identified by genome-wide association studies, clarifying the genetic architecture of this disease.

    • Christian Fuchsberger
    • Jason Flannick
    • Mark I. McCarthy
    Research
    Nature
    Volume: 536, P: 41-47
  • The goal of the 1000 Genomes Project is to provide in-depth information on variation in human genome sequences. In the pilot phase reported here, different strategies for genome-wide sequencing, using high-throughput sequencing platforms, were developed and compared. The resulting data set includes more than 95% of the currently accessible variants found in any individual, and can be used to inform association and functional studies.

    • Richard M. Durbin
    • David Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 467, P: 1061-1073
  • Cryo-EM structures of the S. cerevisiae condensin holo complex reveal that ATP binding triggers exchange of the two HEAT-repeat subunits bound to the SMC ATPase head domains, potentially leading to an interconversion of DNA-binding sites in the catalytic core of condensin that might form the basis of its DNA translocation and loop-extrusion activities.

    • Byung-Gil Lee
    • Fabian Merkel
    • Christian H. Haering
    Research
    Nature Structural & Molecular Biology
    Volume: 27, P: 743-751
  • Haque et al. report a case of chronic alcohol use disorder that had early remission following a traumatic brain injury with left orbitofrontal cortex intracerebral hemorrhage. Mapping of this lesion converges on recently described addictive behavior network maps, but with inverse connectivity.

    • Saarah Haque
    • Albert Bellmunt-Gil
    • Matthew J. Burke
    ResearchOpen Access
    Communications Medicine
    Volume: 5, P: 1-4