Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–4 of 4 results
Advanced filters: Author: Christian Gumbsch Clear advanced filters
  • Although artificial reinforcement learning agents do well when rules are rigid, such as games, they fare poorly in real-world scenarios where small changes in the environment or the required actions can impair performance. The authors provide an overview of the cognitive foundations of hierarchical problem-solving, and propose steps to integrate biologically inspired hierarchical mechanisms to enable problem-solving skills in artificial agents.

    • Manfred Eppe
    • Christian Gumbsch
    • Stefan Wermter
    Reviews
    Nature Machine Intelligence
    Volume: 4, P: 11-20