Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1812 results
Advanced filters: Author: DAVID FRANCIS Clear advanced filters
  • Cholera remains a significant public health burden in sub-Saharan Africa, but the mechanisms of continental and regional spread remain undefined. Here, the authors investigate recent patterns of spread using Vibrio cholerae genomic surveillance data collected by a consortium of seven African Union member states from 2019-2024.

    • Gerald Mboowa
    • Nathaniel Lucero Matteson
    • Sofonias Kifle Tessema
    ResearchOpen Access
    Nature Communications
    P: 1-13
  • Genome-wide association meta-analysis identifies 58 independent risk loci for major anxiety disorders among individuals of European ancestry and implicates GABAergic signaling as a potential mechanism underlying genetic risk for these disorders.

    • Nora I. Strom
    • Brad Verhulst
    • John M. Hettema
    ResearchOpen Access
    Nature Genetics
    Volume: 58, P: 275-288
  • High-depth sequencing of non-cancerous tissue from patients with metastatic cancer reveals single-base mutational signatures of alcohol, smoking and cancer treatments, and reveals how exogenous factors, including cancer therapies, affect somatic cell evolution.

    • Oriol Pich
    • Sophia Ward
    • Nicholas McGranahan
    ResearchOpen Access
    Nature
    P: 1-11
  • The xylosyltransferase isoenzymes XT1 and XT2 catalyze the first glycosylation step in the biosynthesis of proteoglycans. Now, bump-and-hole engineering of XT1 and XT2 enables substrate profiling and modification of proteins as designer proteoglycans to modulate cellular behavior.

    • Zhen Li
    • Himanshi Chawla
    • Benjamin Schumann
    ResearchOpen Access
    Nature Chemical Biology
    P: 1-10
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Genome-wide association studies incorporating data for populations of African ancestry provide an expanded view of the genetic basis of schizophrenia, which has previously been studied mainly in European and East Asian cohorts.

    • Tim B. Bigdeli
    • Chris Chatzinakos
    • Panos Roussos
    Research
    Nature
    P: 1-10
  • De novo and inherited dominant variants in genes encoding U4 and U6 small nuclear RNAs are identified in individuals with retinitis pigmentosa. The variants cluster at nucleotide positions distinct from those implicated in neurodevelopmental disorders.

    • Mathieu Quinodoz
    • Kim Rodenburg
    • Carlo Rivolta
    ResearchOpen Access
    Nature Genetics
    Volume: 58, P: 169-179
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The GroEL/ES chaperonin can act during protein synthesis to promote folding. Here, Roeselová et al. show how GroEL captures, remodels and sequesters nascent proteins in its central chamber, while they remain tethered to the ribosome.

    • Alžběta Roeselová
    • Sarah L. Maslen
    • David Balchin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • In a multicenter, randomized trial of patients with atrial fibrillation and a low risk of thromboembolic events, treatment with the anticoagulant rivaroxaban showed no benefit in reducing cognitive decline, stroke or transient ischemic attack when compared to placebo.

    • Léna Rivard
    • Paul Khairy
    • William Liang
    ResearchOpen Access
    Nature Medicine
    Volume: 32, P: 297-305
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Climate change can alter when and how animals grow, breed, and migrate, but it is unclear whether this allows populations to persist. This global study shows that shifts in seasonal timing are key to helping vertebrate species maintain population growth under global warming.

    • Viktoriia Radchuk
    • Carys V. Jones
    • Martijn van de Pol
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • How DNA Polymerase Epsilon accomplishes continuous leading strand synthesis during DNA replication is not understood. Here, the authors describe a two tiers mechanism required to sustain Pol Epsilon processivity: CHTF18-dependent loading of PCNA at leading strand and dsDNA binding by its POLE3-POLE4 subunits.

    • Alessandro Agnarelli
    • Lauryn Buckley-Benbow
    • Roberto Bellelli
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-18
  • Cardiovascular disease remains the leading global cause of death, highlighting the need for better imaging of myocardial injury. Here, the authors show that SPOT, an AI powered dual bright- and black-blood imaging approach, improves myocardial scar detection and measurement for more accurate diagnosis and treatment of heart disease.

    • Aurelien Bustin
    • Matthias Stuber
    • Hubert Cochet
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Mixed responses to targeted therapy within a patient are a clinical challenge. Here the authors show that TP53 loss-of-function cooperates with whole genome doubling which increases chromosomal instability. This leads to greater cellular diversity and multiple routes of resistance, which in turn promotes mixed responses to treatment.

    • Sebastijan Hobor
    • Maise Al Bakir
    • Charles Swanton
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-21
  • During the antigen-dependent phase of B cell development, clones expressing high-affinity B cell receptors are transferred from light zones to dark zones of germinal centers, while transforming their energy metabolism. Here authors show that in the light zones, the hypoxic microenvironment promotes growth arrest and apoptosis in B cells, while miR-155 protects the high-affinity clones via inducing a switch in energy utilization.

    • Rinako Nakagawa
    • Miriam Llorian
    • Dinis P. Calado
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-16
  • Wastewater-based surveillance tends to focus on specific pathogens. Here, the authors mapped the wastewater virome from 62 cities worldwide to identify over 2,500 viruses, revealing city-specific virome fingerprints and showing that wastewater metagenomics enables early detection of emerging viruses.

    • Nathalie Worp
    • David F. Nieuwenhuijse
    • Miranda de Graaf
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Species’ traits and environmental conditions determine the abundance of tree species across the globe. Here, the authors find that dominant tree species are taller and have softer wood compared to rare species and that these trait differences are more strongly associated with temperature than water availability.

    • Iris Hordijk
    • Lourens Poorter
    • Thomas W. Crowther
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Computational and machine-learning approaches that integrate genomic and transcriptomic variation from paired primary and metastatic non-small cell lung cancer samples from the TRACERx cohort reveal the role of transcriptional events in tumour evolution.

    • Carlos Martínez-Ruiz
    • James R. M. Black
    • Nicholas McGranahan
    ResearchOpen Access
    Nature
    Volume: 616, P: 543-552
  • Combination of epidemiology, preclinical models and ultradeep DNA profiling of clinical cohorts unpicks the inflammatory mechanism by which air pollution promotes lung cancer

    • William Hill
    • Emilia L. Lim
    • Charles Swanton
    Research
    Nature
    Volume: 616, P: 159-167