Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–6 of 6 results
Advanced filters: Author: Danny D. Sahtoe Clear advanced filters
  • The tumor suppressor BAP1 is activated by ASXL1 to deubiquitinate mono-ubiquitinated H2A at K119 in Polycomb gene repression. Here, the authors show how BAP1’s C-terminal extension auto-recruits it to nucleosomes, where the DEUBAD domain of ASXL1 increases BAP1’s affinity for ubiquitin to drive deubiquitination.

    • Danny D. Sahtoe
    • Willem J. van Dijk
    • Titia K. Sixma
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-13
  • A fresh approach to protein design that incorporates excited intermediate states enables precise control over the lifetime of protein interactions, with potential applications in cell-signalling modulation and in biosensors and synthetic circuits.

    • Adam J. Broerman
    • Christoph Pollmann
    • David Baker
    ResearchOpen Access
    Nature
    Volume: 647, P: 528-535
  • An approach to design proteins that can capture amyloidogenic protein regions present in, for example, tau and Aβ42 has now been developed. These designer proteins can inhibit the formation of pathogenic amyloid fibrils and protect cells from toxic species.

    • Danny D. Sahtoe
    • Ewa A. Andrzejewska
    • David Baker
    ResearchOpen Access
    Nature Chemical Biology
    Volume: 20, P: 981-990
  • Computationally designed genetically encoded proteins can be used to target surface proteins, thereby triggering endocytosis and subsequent intracellular degradation, activating signalling or increasing cellular uptake in specific tissues.

    • Buwei Huang
    • Mohamad Abedi
    • David Baker
    ResearchOpen Access
    Nature
    Volume: 638, P: 796-804
  • The E3 ubiquitin ligase RNF168 ubiquitinates specific lysines on histone H2A as part of the DNA damage response. Here, the authors show that the acidic patch on the histone H2A/H2B dimer catalyses RNF168-dependent ubiquitination of histone 2A by redirecting ubiquitination activity towards the relevant target lysines.

    • Francesca Mattiroli
    • Michael Uckelmann
    • Titia K. Sixma
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-11