Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–10 of 10 results
Advanced filters: Author: Edward Farhi Clear advanced filters
  • A study establishes a scalable approach to engineer and characterize a many-body-localized discrete time crystal phase on a superconducting quantum processor.

    • Xiao Mi
    • Matteo Ippoliti
    • Pedram Roushan
    ResearchOpen Access
    Nature
    Volume: 601, P: 531-536
  • It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware.

    • Matthew P. Harrigan
    • Kevin J. Sung
    • Ryan Babbush
    Research
    Nature Physics
    Volume: 17, P: 332-336
  • Quantum supremacy is demonstrated using a programmable superconducting processor known as Sycamore, taking approximately 200 seconds to sample one instance of a quantum circuit a million times, which would take a state-of-the-art supercomputer around ten thousand years to compute.

    • Frank Arute
    • Kunal Arya
    • John M. Martinis
    Research
    Nature
    Volume: 574, P: 505-510
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926
  • The imminent release of tissue atlases combining multichannel microscopy with single-cell sequencing and other omics data from normal and diseased specimens creates an urgent need for data and metadata standards to guide data deposition, curation and release. We describe a Minimum Information about Highly Multiplexed Tissue Imaging (MITI) standard that applies best practices developed for genomics and for other microscopy data to highly multiplexed tissue images and traditional histology.

    • Denis Schapiro
    • Clarence Yapp
    • Peter K. Sorger
    Comments & Opinion
    Nature Methods
    Volume: 19, P: 262-267
  • In an inter-laboratory study, the authors compare the accuracy and performance of three optical density calibration protocols (colloidal silica, serial dilution of silica microspheres, and colony-forming unit (CFU) assay). They demonstrate that serial dilution of silica microspheres is the best of these tested protocols, allowing precise and robust calibration that is easily assessed for quality control and can also evaluate the effective linear range of an instrument.

    • Jacob Beal
    • Natalie G. Farny
    • Jiajie Zhou
    ResearchOpen Access
    Communications Biology
    Volume: 3, P: 1-29