Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–5 of 5 results
Advanced filters: Author: Guto Rhys Clear advanced filters
  • The de novo design of a pair of complementary peptides, one basic for cell penetration and target binding and one acidic that can be fused to proteins of interest, provides an approach for delivery into mammalian cells and subcellular targeting.

    • Guto G. Rhys
    • Jessica A. Cross
    • Derek N. Woolfson
    Research
    Nature Chemical Biology
    Volume: 18, P: 999-1004
  • So far most of the de novo designed proteins are for single states only. Here, the authors present the de novo design and crystal structure determination of a coiled-coil peptide that assembles into multiple, distinct conformational states under the same conditions and further characterise its properties with biophysical experiments, NMR and MD simulations.

    • William M. Dawson
    • Eric J. M. Lang
    • Derek N. Woolfson
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-10
  • Higher order coiled coils with five or more helices can form α-helical barrels. Here the authors show that placing β-branched aliphatic residues along the lumen yields stable and open α-helical barrels, which is of interest for the rational design of functional proteins; whereas, the absence of β-branched side chains leads to unusual low-symmetry α-helical bundles.

    • Guto G. Rhys
    • Christopher W. Wood
    • Derek N. Woolfson
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-12
  • Differential sensing aims to mimic senses such as taste and smell through the use of synthetic receptors. Here, the authors show that arrays of de novo designed peptide assemblies can be used as sensor components to distinguish various analytes and complex mixtures.

    • William M. Dawson
    • Kathryn L. Shelley
    • Derek N. Woolfson
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-12