Analog Ising machines are promising fast computing schemes for some difficult optimization problems, yet their analog nature is known to cause errors and inhibit computational performance. Here, the authors investigate how the choice of nonlinear transfer functions partly suppresses errors caused by analog amplitude inhomogeneity, which leads to order-of-magnitude differences in the computation time.
- Fabian Böhm
- Thomas Van Vaerenbergh
- Guy Van der Sande