Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–14 of 14 results
Advanced filters: Author: H. Graafsma Clear advanced filters
  • The authors perform heating experiments using femtosecond X-ray free electron laser pulses to explore the phase stability of superionic H2O. The absence of a face-centered cubic phase below 50 GPa, where superionic ice forms from the melt, is attributed to the short heating time and may help understanding the stability of superionic phases in ice-rich planets.

    • R. J. Husband
    • H. P. Liermann
    • M. I. McMahon
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • Experiments using high-intensity X-ray pulses incident on high-pressure hydrocarbons suggest that diamond formation can occur at shallower depths in icy planets and may play a role in the internal convection that generates their magnetic fields.

    • Mungo Frost
    • R. Stewart McWilliams
    • Alexander F. Goncharov
    Research
    Nature Astronomy
    Volume: 8, P: 174-181
  • Lipidic sponge phase crystallization yields membrane protein microcrystals that can be injected into an X-ray free electron laser beam, yielding diffraction patterns that can be processed to recover the crystal structure.

    • Linda C Johansson
    • David Arnlund
    • Richard Neutze
    Research
    Nature Methods
    Volume: 9, P: 263-265
  • Researchers describe a mechanism capable of compressing fast and intense X-ray pulses through the rapid loss of crystalline periodicity. It is hoped that this concept, combined with X-ray free-electron laser technology, will allow scientists to obtain structural information at atomic resolutions.

    • Anton Barty
    • Carl Caleman
    • Henry N. Chapman
    Research
    Nature Photonics
    Volume: 6, P: 35-40
  • Due to the pulsed nature of X-ray free electron laser (XFEL) instruments the majority of protein crystals, which are injected using continuous jet injection techniques are wasted. Here, the authors present a microfluidic device to deliver aqueous protein crystal laden droplets segmented with an immiscible oil and demonstrate that with this device an approx. 60% reduction in sample waste was achieved for data collection of 3-deoxy-D-manno-octulosonate 8-phosphate synthase crystals at the EuXFEL.

    • Austin Echelmeier
    • Jorvani Cruz Villarreal
    • Alexandra Ros
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. Over three million diffraction patterns were collected from a stream of nanocrystals of the membrane protein complex photosystem I, which allowed the assembly of a three-dimensional data set for this protein, and proves the concept of this imaging technique.

    • Henry N. Chapman
    • Petra Fromme
    • John C. H. Spence
    Research
    Nature
    Volume: 470, P: 73-77
  • The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of imaging a non-crystalline biological sample. Images of mimivirus are obtained, the largest known virus with a total diameter of about 0.75 micrometres, by injecting a beam of cooled mimivirus particles into the X-ray beam. The measurements indicate no damage during imaging and prove the concept of this imaging technique.

    • M. Marvin Seibert
    • Tomas Ekeberg
    • Janos Hajdu
    Research
    Nature
    Volume: 470, P: 78-81
  • For conventional three-dimensional microcrystal electron diffraction (3D ED/MicroED), a crystal is slowly rotated under an electron beam, leading to inevitable accumulation of radiation damage during data collection. In this work, the authors present a serial electron diffraction method, where still diffraction patterns from many protein nanocrystals are rapidly recorded and merged, which minimises radiation damage and only requires a slightly modified standard scanning transmission electron microscope.

    • Robert Bücker
    • Pascal Hogan-Lamarre
    • R. J. Dwayne Miller
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-8