Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 122 results
Advanced filters: Author: Inigo Martincorena Clear advanced filters
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • A new version of nanorate DNA sequencing, with an error rate lower than five errors per billion base pairs and compatible with whole-exome and targeted capture, enables epidemiological-scale studies of somatic mutation and selection and the generation of high-resolution selection maps across coding and non-coding sites for many genes.

    • Andrew R. J. Lawson
    • Federico Abascal
    • Iñigo Martincorena
    ResearchOpen Access
    Nature
    P: 1-10
  • The authors report the mutational landscape of 29 cell types from microdissected biopsies from 19 organs and explore the mechanisms underlying mutation rates in normal tissues.

    • Luiza Moore
    • Alex Cagan
    • Raheleh Rahbari
    Research
    Nature
    Volume: 597, P: 381-386
  • Chordoma is a rare often incurable malignant bone tumour. Here, the authors investigate driver mutations of sporadic chordoma in 104 cases, revealing duplications in notochordal transcription factor brachyury (T), PI3K signalling mutations, and mutations in LYST, a potential novel cancer gene in chordoma.

    • Patrick S. Tarpey
    • Sam Behjati
    • Peter J. Campbell
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-6
  • Mutational signature analysis of blood cells isolated from 23 chemotherapy-exposed samples and 9 nonexposed controls characterizes the effects of various drugs on mutational burden, signature exposure and cell types.

    • Emily Mitchell
    • My H. Pham
    • Michael R. Stratton
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1684-1694
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Sequencing the genomes of individual skin cells called melanocytes has revealed a rich landscape of DNA changes. These insights shed light on the origins of melanoma, an aggressive type of cancer.

    • Inigo Martincorena
    News & Views
    Nature
    Volume: 586, P: 504-506
  • Whole-gene sequencing of microdissected gastric glands from individuals with and without gastric cancer reveals distinct patterns of somatic mutations and provides insights into influences on the somatic evolution of the gastric epithelium.

    • Tim H. H. Coorens
    • Grace Collord
    • Michael R. Stratton
    ResearchOpen Access
    Nature
    Volume: 640, P: 418-426
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Persistent DNA lesions can occur throughout the human lifespan and can remain in the genome of affected cells for several years and generate a substantial proportion of the mutational burden.

    • Michael Spencer Chapman
    • Emily Mitchell
    • Peter J. Campbell
    ResearchOpen Access
    Nature
    Volume: 638, P: 729-738
    • Maxime Tarabichi
    • Iñigo Martincorena
    • Peter Van Loo
    Correspondence
    Nature Genetics
    Volume: 50, P: 1630-1633
  • The local mutation rate in Escherichia coli has evolved to reduce the risk of deleterious mutations, leading to a non-random occurrence of mutations and suggesting that DNA protection and repair mechanisms preferentially target more important genes.

    • Iñigo Martincorena
    • Aswin S. N. Seshasayee
    • Nicholas M. Luscombe
    Research
    Nature
    Volume: 485, P: 95-98
  • Analysis of the somatic mutations landscape of 111 patients with psoriasis vulgaris shows that the disease is unlikely to be driven by clonal expansions caused by somatic mutations in keratinocytes. A mutational footprint associated with psoralen treatment was observed and characterized.

    • Sigurgeir Olafsson
    • Elke Rodriguez
    • Carl A. Anderson
    ResearchOpen Access
    Nature Genetics
    Volume: 55, P: 1892-1900
  • Chronic infection with SARS-CoV-2 leads to the emergence of viral variants that show reduced susceptibility to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma.

    • Steven A. Kemp
    • Dami A. Collier
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 592, P: 277-282
  • Sera from vaccinated individuals and some monoclonal antibodies show a modest reduction in neutralizing activity against the B.1.1.7 variant of SARS-CoV-2; but the E484K substitution leads to a considerable loss of neutralizing activity.

    • Dami A. Collier
    • Anna De Marco
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 593, P: 136-141
  • Whole-genome sequencing of healthy human epithelial crypts from the small intestines of 39 individuals highlights APOBEC enzymes as a common contributor to the overall mutational burden in this tissue.

    • Yichen Wang
    • Philip S. Robinson
    • Michael R. Stratton
    ResearchOpen Access
    Nature Genetics
    Volume: 55, P: 246-254
  • It is unclear whether somatic mutation rates are elevated in Lynch Syndrome (LS), which is the most common cause of hereditary colorectal cancer. Here, the authors use whole-genome sequencing and organoid cultures to show that normal tissues in LS patients are genomically stable, while ancestor cells of neoplastic tissues undergo multiple cycles of clonal evolution.

    • Bernard C. H. Lee
    • Philip S. Robinson
    • Michael R. Stratton
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10
  • Whole-genome sequencing is used to analyse the landscape of somatic mutation in intestinal crypts from 16 mammalian species, revealing that rates of somatic mutation inversely scale with the lifespan of the animal across species.

    • Alex Cagan
    • Adrian Baez-Ortega
    • Iñigo Martincorena
    ResearchOpen Access
    Nature
    Volume: 604, P: 517-524
  • Inherited mutations in MUTYH have been shown to predispose patients to colorectal cancers. Here, the authors show that MUTYH mutations lead to an increased somatic base substitution mutation rate in normal intestinal epithelial cells, which is the likely cause for the increased cancer risk.

    • Philip S. Robinson
    • Laura E. Thomas
    • Michael R. Stratton
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-12
  • Pathogenic variants of DDX3X are associated with neurodevelopmental disorders (NDD) and cancer. Here, the authors perform saturation genome editing of DDX3X to test the functional impact of 12,776 variants, develop a machine learning classifier to identify variants relevant for NDD, and show that DDX3X predominantly acts as a tumour suppressor in cancer.

    • Elizabeth J. Radford
    • Hong-Kee Tan
    • Matthew E. Hurles
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-17
  • Whole-genome sequencing analysis of somatic mutations in liver samples from patients with chronic liver disease identifies driver mutations in metabolism-related genes such as FOXO1, and shows that these variants frequently exhibit convergent evolution.

    • Stanley W. K. Ng
    • Foad J. Rouhani
    • Peter J. Campbell
    Research
    Nature
    Volume: 598, P: 473-478
  • A study of the evolution of the SARS-CoV-2 virus in England between September 2020 and June 2021 finds that interventions capable of containing previous variants were insufficient to stop the more transmissible Alpha and Delta variants.

    • Harald S. Vöhringer
    • Theo Sanderson
    • Moritz Gerstung
    ResearchOpen Access
    Nature
    Volume: 600, P: 506-511
  • Whole-genome sequencing of liver microdissections from five healthy individuals and nine with cirrhosis demonstrates the effects of liver disease on the genome, including increased rates of mutation, complex structural variation and different mutational signatures.

    • Simon F. Brunner
    • Nicola D. Roberts
    • Peter J. Campbell
    Research
    Nature
    Volume: 574, P: 538-542
  • Whole-genome sequencing of normal human endometrial glands shows that most are clonal cell populations and frequently carry cancer driver mutations that occur early in life, and that parity has a protective effect.

    • Luiza Moore
    • Daniel Leongamornlert
    • Michael R. Stratton
    Research
    Nature
    Volume: 580, P: 640-646
  • Analysis of blood from a healthy human show that haematopoietic stem cells increase rapidly in numbers through early life, reaching a stable plateau in adulthood, and contribute to myeloid and B lymphocyte populations throughout life.

    • Henry Lee-Six
    • Nina Friesgaard Øbro
    • Peter J. Campbell
    Research
    Nature
    Volume: 561, P: 473-478
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341