Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–19 of 19 results
Advanced filters: Author: Jakob Andreasson Clear advanced filters
  • The presence of guest atoms—known as rattlers—in the cages of some clathrate structures is considered to be responsible for the low thermal conductivity of the materials. Neutron spectroscopy provides important evidence regarding the actual phonon dispersion in the material, and the precise way in which this is influenced by rattlers.

    • Mogens Christensen
    • Asger B. Abrahamsen
    • Bo B. Iversen
    Research
    Nature Materials
    Volume: 7, P: 811-815
  • Lipidic sponge phase crystallization yields membrane protein microcrystals that can be injected into an X-ray free electron laser beam, yielding diffraction patterns that can be processed to recover the crystal structure.

    • Linda C Johansson
    • David Arnlund
    • Richard Neutze
    Research
    Nature Methods
    Volume: 9, P: 263-265
  • Researchers describe a mechanism capable of compressing fast and intense X-ray pulses through the rapid loss of crystalline periodicity. It is hoped that this concept, combined with X-ray free-electron laser technology, will allow scientists to obtain structural information at atomic resolutions.

    • Anton Barty
    • Carl Caleman
    • Henry N. Chapman
    Research
    Nature Photonics
    Volume: 6, P: 35-40
  • Imaging live cells at nanometre resolution is challenging because radiation damage kills the cells during exposure. Here, the authors overcome this difficulty in a ‘diffraction before destruction’ experiment using an X-ray laser and record signal to 4 nm resolution on a free-flying cell.

    • Gijs van der Schot
    • Martin Svenda
    • Tomas Ekeberg
    Research
    Nature Communications
    Volume: 6, P: 1-9
  • The new European X-Ray Free-Electron Laser (EuXFEL) is the first XFEL that generates X-ray pulses with a megahertz inter-pulse spacing. Here the authors demonstrate that high-quality and damage-free protein structures can be obtained with the currently available 1.1 MHz repetition rate pulses using lysozyme as a test case and furthermore present a β-lactamase structure.

    • Max O. Wiedorn
    • Dominik Oberthür
    • Anton Barty
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-11
  • The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. Over three million diffraction patterns were collected from a stream of nanocrystals of the membrane protein complex photosystem I, which allowed the assembly of a three-dimensional data set for this protein, and proves the concept of this imaging technique.

    • Henry N. Chapman
    • Petra Fromme
    • John C. H. Spence
    Research
    Nature
    Volume: 470, P: 73-77
  • The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of imaging a non-crystalline biological sample. Images of mimivirus are obtained, the largest known virus with a total diameter of about 0.75 micrometres, by injecting a beam of cooled mimivirus particles into the X-ray beam. The measurements indicate no damage during imaging and prove the concept of this imaging technique.

    • M. Marvin Seibert
    • Tomas Ekeberg
    • Janos Hajdu
    Research
    Nature
    Volume: 470, P: 78-81
  • Femtosecond X-ray Fourier holography imaging with record-high lateral resolution below 20 nm is demonstrated. Phase information is encoded into the interference of the diffraction patterns of a reference particle with a measurement sample.

    • Tais Gorkhover
    • Anatoli Ulmer
    • Christoph Bostedt
    Research
    Nature Photonics
    Volume: 12, P: 150-153
  • Generating ultrashort spectrally tunable pulses via high-harmonic generation (HHG) enables matching the excitation photon energy to the characteristic resonance of the sample to study its ultrafast dynamics. The authors demonstrate a compact continuously tunable high-intensity VUV HHG source that can rival state-of-the-art seeded FELs.

    • Lucie Jurkovičová
    • Ltaief Ben Ltaief
    • Jakob Andreasson
    ResearchOpen Access
    Communications Physics
    Volume: 7, P: 1-9
  • Diffraction experiments using high energy X-rays are used to determine molecular structures at high resolution, and with new free electron lasers diffraction experiments on non-crystalline samples are becoming achievable. The authors present a statistical method to identify hit events in flash X-ray imaging experiments of macromolecular complex and demonstrate it on RNA polymerase data.

    • Alberto Pietrini
    • Johan Bielecki
    • Carl Nettelblad
    ResearchOpen Access
    Communications Physics
    Volume: 1, P: 1-11
  • Diffractive imaging of single-particle nanoscale systems has so far been hindered by low hit probabilities and repetition rates. Here, single-particle imaging of nanospheres and viruses at megahertz repetition rates is demonstrated at the European X-ray Free-Electron Laser (XFEL) for the first time.

    • Egor Sobolev
    • Sergei Zolotarev
    • Filipe R. N. C. Maia
    ResearchOpen Access
    Communications Physics
    Volume: 3, P: 1-11