Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 238 results
Advanced filters: Author: Jeffrey D. Burke Clear advanced filters
  • Polygenic risk scores can help identify individuals at higher risk of type 2 diabetes. Here, the authors characterise a multi-ancestry score across nearly 900,000 people, showing that its predictive value depends on demographic and clinical context and extends to related traits and complications.

    • Boya Guo
    • Yanwei Cai
    • Burcu F. Darst
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • The calorimetric determination of enthalpies of mixing in multi-component molten salt systems often relies on empirical models that lack physically interpretable parameters. Here, the authors use the molecular interaction volume model (MIVM) to integrate experimentally measured enthalpies and solvation structures from ab initio molecular dynamics simulations to extrapolate excess Gibbs energy and determine the compositional dependence of La3+ activity in the LaCl3-(LiCl-KCl) system.

    • Vitaliy G. Goncharov
    • William Smith
    • Xiaofeng Guo
    ResearchOpen Access
    Communications Chemistry
    Volume: 8, P: 1-11
  • The authors report upconversion in few-layer transition metal dichalcogenides, and attribute it to a resonant exciton-exciton annihilation involving a pair of dark excitons with opposite momenta, followed by the spontaneous emission of upconverted bright excitons.

    • Yi-Hsun Chen
    • Ping-Yuan Lo
    • Shao-Yu Chen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Understanding the growth pathway of faceted alloy nanoparticles at the atomic level is crucial to morphology control and property tuning, but remains a challenge. Here, the authors reveal the particle growth and facet formation mechanisms of octahedral Pt3Ni nanoparticles using multiple cutting-edge in situ techniques.

    • Xiaochen Shen
    • Changlin Zhang
    • Zhenmeng Peng
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-7
  • The theory-guided synthesis of a tungsten-based W2TiC2Tx MXene from a non-MAX nanolaminated ternary carbide (W,Ti)4C4−y is reported. The tungsten-rich basal plane of the W2TiC2Tx MXene is then examined for the electrocatalytic hydrogen evolution reaction using a combined experimental and theoretical approach.

    • Anupma Thakur
    • Wyatt J. Highland
    • Babak Anasori
    Research
    Nature Synthesis
    Volume: 4, P: 888-900
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Development of organic electronic materials relies on understanding structure-function relationships in conjugated polymers but the synthetic workload to make large numbers of new compounds presents a practical barrier to properly survey conjugated organic derivatives. Here, the authors use automated synthesis to prepare a library of conjugated oligomers with systematically varied side chain composition followed by single-molecule characterization of charge transport.

    • Songsong Li
    • Edward R. Jira
    • Charles M. Schroeder
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-8
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Defects in metal-organic frameworks impact their structure and properties. Here authors uncover formate defects in MOF-74 that originate from decomposed DMF solvent. NMR shows that the defects partially eliminate open metal sites and lead to a decrease of gas adsorption; the adsorption mechanism of CO2 in defective MOF is also elucidated.

    • Yao Fu
    • Yifeng Yao
    • Xueqian Kong
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • Achieving robust and controllable conductance in single-molecule junctions is challenging due to the dynamic nature of molecular conformations that fluctuate over operational timescales. A strategy using shape-persistent molecules has now been developed that demonstrates nearly junction-displacement-independent conductance, providing a stable solution for single-molecule electronic properties.

    • Xiaolin Liu
    • Hao Yang
    • Charles M. Schroeder
    Research
    Nature Chemistry
    Volume: 16, P: 1772-1780
  • Control of ion diffusion is instrumental in understanding the behavior and structural transformations of transition metal oxides. Here, the authors use in-situ TEM to reveal the atomic-scale evolution of the topotactic phase transition in BM-SFO triggered by the migration of oxygen ions under an external stimulus.

    • Zhenzhong Yang
    • Le Wang
    • Yingge Du
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • The Au2+ oxidation state is rarely stable in molecules or extended solids, where extreme synthetic conditions or exotic ligands are often necessary. Now, Au2+ has been stabilized with simple Cl ligands in Cs4AuIIAuIII2Cl12, an extended solid with a perovskite-derived structure that is readily synthesized under mild conditions and is stable to ambient conditions.

    • Kurt P. Lindquist
    • Armin Eghdami
    • Hemamala I. Karunadasa
    Research
    Nature Chemistry
    Volume: 15, P: 1780-1786
  • Stable chelation of the 147Pm radionuclide in aqueous solution by the newly synthesized organic diglycolamide ligand is demonstrated and the resulting complex studied, showing accelerated shortening of bonds at the beginning of the lanthanide series.

    • Darren M. Driscoll
    • Frankie D. White
    • Alexander S. Ivanov
    ResearchOpen Access
    Nature
    Volume: 629, P: 819-823