Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 102 results
Advanced filters: Author: Jeremy S Garrett Clear advanced filters
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • A spatially resolved transcriptional atlas of the mid-gestational developing human brain has been created using laser-capture microdissection and microarray technology, providing a comprehensive reference resource which also enables new hypotheses about the nature of human brain evolution and the origins of neurodevelopmental disorders.

    • Jeremy A. Miller
    • Song-Lin Ding
    • Ed S. Lein
    Research
    Nature
    Volume: 508, P: 199-206
  • Characteristic genes or proteins driving continuous biological processes are difficult to uncover from noisy single-cell data. Here, authors present DELVE, an unsupervised feature selection method to identify core molecular features driving cell fate decisions.

    • Jolene S. Ranek
    • Wayne Stallaert
    • Jeremy E. Purvis
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-26
  • A high-resolution gene expression atlas of prenatal and postnatal brain development of rhesus monkey charts global transcriptional dynamics in relation to brain maturation, while comparative analysis reveals human-specific gene trajectories; candidate risk genes associated with human neurodevelopmental disorders tend to be co-expressed in disease-specific patterns in the developing monkey neocortex.

    • Trygve E. Bakken
    • Jeremy A. Miller
    • Ed S. Lein
    Research
    Nature
    Volume: 535, P: 367-375
  • Most studies of the genetics of the metabolome have been done in individuals of European descent. Here, the authors integrate genomics and metabolomics in Black individuals, highlighting the value of whole genome sequencing in diverse populations and linking circulating metabolites to human disease.

    • Usman A. Tahir
    • Daniel H. Katz
    • Robert E. Gerszten
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • Sexual dimorphism in genetic vulnerability to schizophrenia, systemic lupus erythematosus and Sjögren’s syndrome is linked to differential protein abundance from alleles of complement component 4.

    • Nolan Kamitaki
    • Aswin Sekar
    • Steven A. McCarroll
    Research
    Nature
    Volume: 582, P: 577-581
  • Radionuclide brachytherapy delivered via an injectable biopolymer depot conjugated with iodine-131 and combined with systemically delivered paclitaxel induced the complete regression of multiple subcutaneous and orthotopic pancreatic tumours in mice.

    • Jeffrey L. Schaal
    • Jayanta Bhattacharyya
    • Ashutosh Chilkoti
    Research
    Nature Biomedical Engineering
    Volume: 6, P: 1148-1166
  • In June 2022, the IXPE satellite observed a shock passing through the jet of active galaxy Markarian 421. The rotation of the X-ray-polarized radiation over a 5-day period revealed that the jet contains a helical magnetic field.

    • Laura Di Gesu
    • Herman L. Marshall
    • Silvia Zane
    Research
    Nature Astronomy
    Volume: 7, P: 1245-1258
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Systemic dissection of sexually dimorphic phenotypes in mice is lacking. Here, Karp and the International Mouse Phenotype Consortium show that approximately 10% of qualitative traits and 56% of quantitative traits in mice as measured in laboratory setting are sexually dimorphic.

    • Natasha A. Karp
    • Jeremy Mason
    • Jacqueline K. White
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-12
  • The full extent of the genetic basis for hearing impairment is unknown. Here, as part of the International Mouse Phenotyping Consortium, the authors perform a hearing loss screen in 3006 mouse knockout strains and identify 52 new candidate genes for genetic hearing loss.

    • Michael R. Bowl
    • Michelle M. Simon
    • Steve D. M. Brown
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-11
  • In a multicenter research program coordinated by the International Mouse Phenotyping Consortium, Spielmann et al. analyze the cardiac function and structure in ~4,000 monogenic mutant mice and identify 705 mouse genes involved in cardiac function, 75% of which have not been previously linked to cardiac heritable disease in humans. Using the UK Biobank human data, the authors validate the link between cardiovascular disease and some of the newly identified genes to illustrate the resource value and potential of their mutant mouse collection.

    • Nadine Spielmann
    • Gregor Miller
    • Martin Hrabe de Angelis
    ResearchOpen Access
    Nature Cardiovascular Research
    Volume: 1, P: 157-173
  • Zhang et al. show that the poly(GA) proteins produced in patients with C9ORF72 repeat expansions cause neurodegeneration and behavioral abnormalities when expressed in mice. The emergence of these phenotypes requires poly(GA) aggregation, and poly(GA) inclusions sequester HR23 proteins involved in proteasomal degradation, as well as proteins involved in nucleocytoplasmic transport.

    • Yong-Jie Zhang
    • Tania F Gendron
    • Leonard Petrucelli
    Research
    Nature Neuroscience
    Volume: 19, P: 668-677
  • The genetic basis of metabolic diseases is incompletely understood. Here, by high-throughput phenotyping of 2,016 knockout mouse strains, Rozman and colleagues identify candidate metabolic genes, many of which are associated with unexplored regulatory gene networks and metabolic traits in human GWAS.

    • Jan Rozman
    • Birgit Rathkolb
    • Martin Hrabe de Angelis
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-16
  • This Perspective from the Harvard Chan Microbiome in Public Health Center describes a generalizable and scalable approach to stool and oral microbiome and metadata collection in the Micro-N (Microbiome Among Nurses) study, to show how to carry out prospective studies of the microbiome.

    • Christine Everett
    • Chengchen Li
    • Mingyang Song
    Reviews
    Nature Protocols
    Volume: 16, P: 2724-2731
  • The cellular heterogeneity in brain obscures the identification of robust cellular regulatory networks. Here the authors integrate genome-wide chromosome conformation data from sorted neurons and glia, with transcriptomic and enhancer profiles, to characterize cell-type-specific gene regulatory landscapes in the human brain, and provide insights into cell-type-specific gene regulatory networks in brain disorders.

    • Benxia Hu
    • Hyejung Won
    • Daniel H. Geschwind
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-13
  • Microbiome science is fast advancing and its careful integration into public health is detailed in this Perspective.

    • Jeremy E. Wilkinson
    • Eric A. Franzosa
    • Curtis Huttenhower
    Reviews
    Nature Medicine
    Volume: 27, P: 766-774