Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 101 results
Advanced filters: Author: Joana Xavier Clear advanced filters
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Joana C. Xavier, Rebecca E. Gerhards and colleagues reconstruct the habitat and lifestyle of the last bacterial common ancestor (LBCA) through the construction of the metabolic network and gene tree analysis of 146 LCBA protein families. Their analyses indicate that the LBCA was rod-shaped, and that the first lineage to diverge from the ancestral bacterial stem was most similar to modern Clostridia, followed by other autotrophs that harbor the acetyl-CoA pathway.

    • Joana C. Xavier
    • Rebecca E. Gerhards
    • William F. Martin
    ResearchOpen Access
    Communications Biology
    Volume: 4, P: 1-10
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • L-Amino acid Transporters (LATs) are asymmetric amino acid exchangers. Here the authors determine the crystal structure of a prokaryotic LAT, the alanine-serine-cysteine exchanger (BasC) and identify key residues for asymmetric substrate interaction in both BasC and the homologous human transporter Asc-1 through functional studies.

    • Ekaitz Errasti-Murugarren
    • Joana Fort
    • Manuel Palacín
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-12
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • This study shows that liquid-liquid phase separation enhances the catalytic efficiency of peptides by up to 15,000-fold through the formation of peptide coacervates. These microreactors can also selectively recruit phosphorylated proteins, providing insights into the evolution of enzymatic activity.

    • David Q. P. Reis
    • Sara Pereira
    • Ana S. Pina
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-12
  • Clinical studies have suggested that the therapeutic potential of polyclonal convalescent plasma is highest in the first days of symptoms. Here, the authors present results from a pooled analysis of two clinical trials in COVID-19 outpatients that did not provide conclusive evidence in favor of convalescent plasma.

    • Pere Millat-Martinez
    • Arvind Gharbharan
    • Michael Marks
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-9
  • SARS-CoV-2 infection can result in severe lung inflammation and pathology, but host response remains incompletely understood. Here the authors show in Syrian hamsters that STAT2 signaling restricts systemic virus dissemination but also drives severe lung injury, playing a dual role in SARS-CoV-2 infection.

    • Robbert Boudewijns
    • Hendrik Jan Thibaut
    • Kai Dallmeier
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • This study presents a large-scale analysis of microbial diversity in deep-sea sponges. They show that sponge microbial abundance status, geographic distance, sponge phylogeny and the physical-biogeochemical environment drive microbiome composition, in descending order of relevance. The uniqueness of each deep-sea sponge ground stresses the need for their strategic preservation.

    • Kathrin Busch
    • Beate M. Slaby
    • Ute Hentschel
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • The physical linkage of the first self-replicating molecules is likely to have been selected based on their capacity to perform cooperative catalysis.

    • Joana C. Xavier
    News & Views
    Nature Ecology & Evolution
    Volume: 4, P: 18-19
  • The calcium binding protein S100B is an abundantly expressed protein in the brain and has neuro-protective functions by inhibiting Aβ aggregation and metal ion toxicity. Here, the authors combine cell biology and biochemical experiments with chemical kinetics and NMR measurements and show that S100B protein is an extracellular Tau chaperone and further characterize the interactions between S100B and Tau.

    • Guilherme G. Moreira
    • François-Xavier Cantrelle
    • Cláudio M. Gomes
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • Joana Carlevaro-Fita, Andrés Lanzós et al. present the Cancer LncRNA Census (CLC), a manually curated dataset of 122 long noncoding RNAs (lncRNAs) with experimentally-validated functions in cancer based on data from the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. CLC lncRNAs have unique gene features, and a number display evidence for cancer-driving functions that are conserved from humans to mice.

    • Joana Carlevaro-Fita
    • Andrés Lanzós
    • Christian von Mering
    ResearchOpen Access
    Communications Biology
    Volume: 3, P: 1-16
  • Some prokaryotes use alternative respiratory chain complexes, such as the alternative complex III (ACIII), to generate energy. Here authors provide the cryoEM structure of ACIII from Rhodothermus marinus which shows the arrangement of cofactors and provides insights into the mechanism for energy transduction.

    • Joana S. Sousa
    • Filipa Calisto
    • Manuela M. Pereira
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-10
  • Three recent metagenomic studies analyse methanogenesis-related genes in previously uncharacterized, sediment-inhabiting archaeal lineages. They elucidate the metabolic capacity encoded in the genomes of these lineages, yet how these organisms harness energy is still a mystery.

    • Joana C. Xavier
    • William F. Martin
    News & Views
    Nature Microbiology
    Volume: 4, P: 547-549
  • The SARS-CoV-2 Africa dashboard is an interactive tool that enables visualization of SARS-CoV-2 genomic information in African countries. The customizable app allows users to visualize the number of sequences deposited in each country, and the variants circulating over time. Our dashboard enables near real-time exploration of public data that can inform policymakers, healthcare professionals and the public about the ongoing pandemic.

    • Joicymara S. Xavier
    • Monika Moir
    • Tulio de Oliveira
    Comments & Opinion
    Nature Microbiology
    Volume: 8, P: 1-4
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352