Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 257 results
Advanced filters: Author: Justin J. Wilson Clear advanced filters
  • The GIAB genomic stratification resource defines challenging regions in three commonly used human genome references, including the first complete human genome (CHM13). These help understand strengths and weaknesses of sequencing and analysis methods.

    • Nathan Dwarshuis
    • Divya Kalra
    • Justin M. Zook
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • The paper describes a Genome in a Bottle benchmark for the X and Y chromosomes enabled by complete chromosome assemblies. This benchmark enables users to evaluate small variant accuracy in challenging repetitive regions of the sex chromosomes.

    • Justin Wagner
    • Nathan D. Olson
    • Justin M. Zook
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-7
  • Artificial spin-ice materials are usually described by spins that are either up or down. Here, a new type of spin ice is fabricated where the spins can be in one of three states with different coexisting phases separated by a first-order transition.

    • Joseph Sklenar
    • Yuyang Lao
    • Peter Schiffer
    Research
    Nature Physics
    Volume: 15, P: 191-195
  • Birds can adapt to temperature gradients by changing body size (Bergmann’s rule) or bill size (Allen’s rule), but many groups don’t conform to these patterns. Here the authors show that most bird families show subtle and complementary changes in bill and body size, while also being constrained by feeding ecology.

    • Justin W. Baldwin
    • Joan Garcia-Porta
    • Carlos A. Botero
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-10
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The US COVID-19 Scenario Modeling Hub produced medium to long term projections based on different epidemic scenarios. In this study, the authors evaluate 14 rounds of projections by comparing them to the epidemic trajectories that occurred, and discuss lessons learned for future similar projects.

    • Emily Howerton
    • Lucie Contamin
    • Justin Lessler
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • A study generates a clinicogenomics dataset resource, MSK-CHORD, that combines natural language processing-derived clinical annotations with patient medical data from various sources to improve models of cancer outcome.

    • Justin Jee
    • Christopher Fong
    • Xinran Bi
    ResearchOpen Access
    Nature
    Volume: 636, P: 728-736
  • Metabolic enzymes of the tricarboxylic acid cycle, such as 2-oxoglutarate dehydrogenase, are differentially expressed in absorptive and secretory lineages, guiding cell fate establishment and offering insights for targeted regenerative therapies.

    • Almudena Chaves-Perez
    • Scott E. Millman
    • Scott W. Lowe
    ResearchOpen Access
    Nature
    Volume: 643, P: 468-477
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.

    • Cristina Puig-Saus
    • Barbara Sennino
    • Antoni Ribas
    Research
    Nature
    Volume: 615, P: 697-704
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Reductions in air pollution in the United States over the past two decades have led to positive results for forest growth and survival. However, further measures are needed to protect sensitive tree species and bolster forest biodiversity

    • Justin G. Coughlin
    • Christopher M. Clark
    • Jeremy D. Ash
    Research
    Nature Sustainability
    Volume: 6, P: 1607-1619
  • Polycomb repressive complex 2 (PRC2) silences gene expression through trimethylation of K27 of histone H3 (H3K27Me). Here, the authors report the structure of the human PRC2 complex bound to the oncogenic H3K27M mutant, and suggest a mechanism for its potency in childhood brain cancers.

    • Neil Justin
    • Ying Zhang
    • Steven J. Gamblin
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-11
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten 171Yb+ hyperfine qubits in a model trapped-ion quantum processor.

    • Philipp T. Dumitrescu
    • Justin G. Bohnet
    • Andrew C. Potter
    Research
    Nature
    Volume: 607, P: 463-467
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • This Perspective explores the connection between copper and cancer and how challenges in the field could be addressed, and is a synthesis of discussions from the Copper Cancer Consortium, a meeting of experts in the field that took place in March 2020.

    • Eva J. Ge
    • Ashley I. Bush
    • Christopher J. Chang
    Reviews
    Nature Reviews Cancer
    Volume: 22, P: 102-113
  • The impact of the DART spacecraft on the asteroid Dimorphos is reported and reconstructed, demonstrating that kinetic impactor technology is a viable technique to potentially defend Earth from asteroids.

    • R. Terik Daly
    • Carolyn M. Ernst
    • Yun Zhang
    ResearchOpen Access
    Nature
    Volume: 616, P: 443-447
  • Transcriptomic and proteomic profiling of blood samples from individuals with COVID-19 reveals immune cell and hematopoietic progenitor cell alterations that are differentially associated with disease severity.

    • Emily Stephenson
    • Gary Reynolds
    • Muzlifah Haniffa
    ResearchOpen Access
    Nature Medicine
    Volume: 27, P: 904-916
  • The goal of the 1000 Genomes Project is to provide in-depth information on variation in human genome sequences. In the pilot phase reported here, different strategies for genome-wide sequencing, using high-throughput sequencing platforms, were developed and compared. The resulting data set includes more than 95% of the currently accessible variants found in any individual, and can be used to inform association and functional studies.

    • Richard M. Durbin
    • David Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 467, P: 1061-1073