Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 119 results
Advanced filters: Author: Karsten Schmidt Clear advanced filters
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The selective hydrogenation of trace acetylene to ethylene is a well-established process for purifying fossil-derived ethylene streams. Here, the authors present a self-repairing Pd-C laterally condensed catalyst that improves selectivity, prevents sub-surface hydride formation, and achieves high ethylene productivity, effectively bridging the gap between powder catalysts and single-crystal model catalysts.

    • Zehua Li
    • Eylül Öztuna
    • Robert Schlögl
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • The identification of HLA peptides by mass spectrometry is non-trivial. Here, the authors extended and used the wealth of data from the ProteomeTools project to improve the prediction of non-tryptic peptides using deep learning, and show their approach enables a variety of immunological discoveries.

    • Mathias Wilhelm
    • Daniel P. Zolg
    • Bernhard Kuster
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-12
  • Phytochrome photoreceptors are master regulators of plant development. This paper describes 3D structures of soybean phytochrome A in both Pr (inactive) and Pfr (signalling) states, revealing changes that might transmit the light signal to the cell.

    • Soshichiro Nagano
    • David von Stetten
    • Jon Hughes
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Multiomic phenotyping provides molecular insights into complex physiological processes and pathologies. The study uses 18 omics platforms to analyze biofluids from 391 participants. It constructs a comprehensive molecular network based on omics integration, revealing insights into diabetes and other traits.

    • Anna Halama
    • Shaza Zaghlool
    • Karsten Suhre
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-23
  • A trans-ancestry genome-wide association study of serum urate levels identifies 183 loci influencing this trait. Enrichment analyses, fine-mapping and colocalization with gene expression in 47 tissues implicate the kidney and liver as key target organs and prioritize potential causal genes.

    • Adrienne Tin
    • Jonathan Marten
    • Anna Köttgen
    Research
    Nature Genetics
    Volume: 51, P: 1459-1474
  • Type three secretion systems consist of a multisubunit protein complex that crosses the bacterial membranes and an extracellular needle-shaped structure. New data show that the needle protomer partially refolds from alpha-helix into beta-strand conformation to extend the needle from the distal end. The closely related flagellar system also grows at the tip, but it is not known whether protomer refolding is required for its assembly.

    • Ömer Poyraz
    • Holger Schmidt
    • Michael Kolbe
    Research
    Nature Structural & Molecular Biology
    Volume: 17, P: 788-792
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Mitochondrial dysfunction is a contributing factor in Parkinson’s disease. Here the authors carry out a multilayered omics analysis of Parkinson’s disease patient-derived neuronal cells, which reveals a reversible hypometabolism mediated by α-ketoglutarate dehydrogenase deficiency, which is correlated with disease progression in the donating patients.

    • Sebastian Schmidt
    • Constantin Stautner
    • Wolfgang Wurst
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-24
  • Multi-omics profiling of monkeypox virus infected human primary cells was used to characterize the infection process and to prioritize potential antiviral drug targets.

    • Yiqi Huang
    • Valter Bergant
    • Andreas Pichlmair
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • Phytochromes regulate plant growth by sensing far-red light through the photoisomerization of their protein-bound chromophores. In the phytochrome Agp2, it has now been demonstrated that ultrafast proton-transfer occurs from the chromophore to a protein–water network before photoisomerization, inducing protein changes on the ultrafast timescale. These protein changes develop further on longer timescales, resulting in an activated protein conformation.

    • Yang Yang
    • Till Stensitzki
    • Karsten Heyne
    ResearchOpen Access
    Nature Chemistry
    Volume: 14, P: 823-830
  • Parasitic lifestyles leave unique genomic footprints. Here, the authors describe the genome sequence of a parasitic plant, Cuscuta campestris, and find that gene losses and host gene acquisitions reflect the independence from photosynthesis and the ability to retain and express chunks of foreign genomic DNA.

    • Alexander Vogel
    • Rainer Schwacke
    • Kirsten Krause
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-11
  • Global patterns of regional plant diversity are relatively well known, but whether they hold for local communities is debated. This study created multi-grain global maps of alpha diversity for vascular plants to provide a nuanced understanding of plant diversity hotspots and improve predictions of global change effects on biodiversity.

    • Francesco Maria Sabatini
    • Borja Jiménez-Alfaro
    • Helge Bruelheide
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • Time-series data including 1,794 plant species from 7,738 vegetation plots in Germany between 1927 and 2020 reveal patterns of change in biodiversity, and suggest that more species declined than increased in abundance during this period.

    • Ute Jandt
    • Helge Bruelheide
    • Monika Wulf
    Research
    Nature
    Volume: 611, P: 512-518
  • The ketone body β-hydroxybutyrate can be used as an alternative carbon source by T cells to maintain their function during severe respiratory viral infections, including infection with SARS-CoV-2.

    • Fotios Karagiannis
    • Konrad Peukert
    • Christoph Wilhelm
    Research
    Nature
    Volume: 609, P: 801-807
  • The Micrarchaeota lineage includes poorly characterized archaea with reduced genomes that likely depend on host interactions for survival. Here, the authors report a stable co-culture of a member of the Micrarchaeota and its host, and use multi-omic and physiological analyses to shed light on this symbiosis.

    • Susanne Krause
    • Sabrina Gfrerer
    • Johannes Gescher
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-15
  • Although plant functional trait combinations reflect ecological trade-offs at the species level, little is known about how this translates to whole communities. Here, the authors show that global trait composition is captured by two main dimensions that are only weakly related to macro-environmental drivers.

    • Helge Bruelheide
    • Jürgen Dengler
    • Ute Jandt
    Research
    Nature Ecology & Evolution
    Volume: 2, P: 1906-1917
  • Drugs targeting dysregulated ERK1/2 signaling can cause severe cardiac side effects, precluding their wide therapeutic application. Here, a new and cardio-safe targeting strategy is presented that interferes with ERK dimerization to prevent pathological ERK1/2 signaling in the heart and cancer.

    • Angela Tomasovic
    • Theresa Brand
    • Kristina Lorenz
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16