Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 94 results
Advanced filters: Author: Lawrence D Frenkel Clear advanced filters
  • Combining quantum effects with conductivity modulation in complex oxides requires mutually exclusive criteria, making applications difficult. Using tip-induced electrical generation of anti-Frenkel defects, conducting features in Er(Mn,Ti)O3 are written with nanoscale precision while keeping structural integrity.

    • Donald M. Evans
    • Theodor S. Holstad
    • Dennis Meier
    Research
    Nature Materials
    Volume: 19, P: 1195-1200
  • The optical response of inorganic two-dimensional semiconductors is dominated by Wannier-Mott excitons, but molecular systems can host localised Frenkel excitons. Here, the authors report strong optical response in a class of monolayer molecular J-aggregates due to the coherent Coulomb interaction between localised Frenkel excitons.

    • Huijuan Zhao
    • Yingbo Zhao
    • Xinran Wang
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-9
  • Using a three-pronged approach β€” spanning field-driven negative capacitance stabilization to increase intrinsic energy storage, antiferroelectric superlattice engineering to increase total energy storage, and conformal three-dimensional deposition to increase areal energy storage density β€” very high electrostatic energy storage density and power density are reported in HfO2–ZrO2-based thin film microcapacitors integrated into silicon.

    • Suraj S. Cheema
    • Nirmaan Shanker
    • Sayeef Salahuddin
    Research
    Nature
    Volume: 629, P: 803-809
  • The performance of energy materials is affected by structural defects, as well as physicochemical heterogeneity over different length scales. Here the authors map nanoscale correlations between morphological and functional heterogeneity, quantifying the trap states limiting electronic transport in bismuth vanadate thin films.

    • Johanna Eichhorn
    • Christoph Kastl
    • Francesca M. Toma
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-8
  • The magneto-optical (MO) effects probe the electronic and magnetic properties of a material, particularly useful for 2D magnets. Here, the authors show that the large optical and MO responses in ferromagnetic monolayer CrI3 arise from strongly bound excitons, extending over several atoms.

    • Meng Wu
    • Zhenglu Li
    • Steven G. Louie
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-8
  • The development of future computation devices will be aided by a better understanding of the physics underlying material behaviors. Using thermoreflectance and spatially resolved X-ray microscopy, Kumar et al. elucidate the origin of two types of negative differential resistance in NbO2 memristors.

    • Suhas Kumar
    • Ziwen Wang
    • R. Stanley Williams
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-6
  • A de novo-designed protein that precisely assembles a chlorophyll dimer has been developed. The design matches the conformation of the native β€˜special pair’ of chlorophylls that functions as the primary electron donor in natural photosynthetic reaction centers. In the designed protein, excitonically coupled chlorophylls participate in energy transfer. The proteins were also redesigned to assemble into 24-chlorophyll nanocages.

    • Nathan M. Ennist
    • Shunzhi Wang
    • David Baker
    ResearchOpen Access
    Nature Chemical Biology
    Volume: 20, P: 906-915
  • Developing heat-resistant dielectric polymers for electrification is challenging due to the inverse relationship between thermal stability and electrical insulation. Using a machine learning-driven approach, the researchers identify and validate high-performance polymers that demonstrate promising thermal resilience and energy density for high-temperature applications.

    • He Li
    • Hongbo Zheng
    • Yi Liu
    Research
    Nature Energy
    Volume: 10, P: 90-100
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Perovskite solar cells have stability issues that prevent their widespread adoption as a photovoltaic technology. This Review explores how natural biomaterial structures have evolved to solve similar problems at the chemical, microstructural and macroscopic levels, and how these natural solutions can be applied to perovskite solar cells.

    • Tianwei Duan
    • Peijun Guo
    • Yuanyuan Zhou
    Reviews
    Nature Reviews Clean Technology
    Volume: 1, P: 638-655
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The phenomenon of many-body localization gives rise to entirely new phases of quantum matter when it is driven away from equilibrium. A numerical study now shows that one of these phasesβ€”the discrete time crystalβ€”can also occur in a classical spin chain.

    • Norman Y. Yao
    • Chetan Nayak
    • Michael P. Zaletel
    Research
    Nature Physics
    Volume: 16, P: 438-447
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Little is known about diffusion along metal/ceramic interfaces even though it controls the physical behavior and lifetimes of many devices (including batteries, microelectronics, and jet engines). Here, the authors show that diffusion along a nickel/sapphire interface is abnormally fast due to nickel vacancies and generalise their findings to a wide-range of metal/ceramic systems.

    • Aakash Kumar
    • Hagit Barda
    • David J. Srolovitz
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-8
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • The phase behavior of grain boundaries can influence the interfacial properties. Here the authors demonstrate nanoscale patterning of a grain boundary by two alternating phases in Cu that exhibit a congruent, diffusionless transition between the two phases.

    • Lena Langenohl
    • Tobias Brink
    • Christian H. Liebscher
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-11
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • This study combines computational chemistry and machine learning to provide insight on whether diamonds can form inside ice giants. This can help explain the dichotomy of Uranus and Neptune.

    • Bingqing Cheng
    • Sebastien Hamel
    • Mandy Bethkenhagen
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • Interplay between structure and composition of grain boundaries remains elusive, particularly at the atomic level. Here, the authors discover the atomic motifs, which is the smallest structural unit, control the most important chemical properties of grain boundaries.

    • Xuyang Zhou
    • Ali Ahmadian
    • Dierk Raabe
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-11
  • Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.

    • Geun Ho Ahn
    • Matin Amani
    • Ali Javey
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-8
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro CortΓ©s-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Recently, coherent quantum beating has been observed in photosynthetic complexes. Theoretical work now shows how quantum correlations in biological systems can be quantified, and establishes that quantum entanglement exists in light-harvesting complexes, even at physiological temperatures.

    • Mohan Sarovar
    • Akihito Ishizaki
    • K. Birgitta Whaley
    Research
    Nature Physics
    Volume: 6, P: 462-467
  • Singly dispersed bimetallic catalysts should exhibit different behaviour and activity to bulk bimetallic species. Here, the authors fabricate isolated Rh1Co3bimetallic catalytic sites and demonstrate their high activity and selectivity for nitric oxide reduction.

    • Shiran Zhang
    • Luan Nguyen
    • Franklin Tao
    Research
    Nature Communications
    Volume: 6, P: 1-10