Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–5 of 5 results
Advanced filters: Author: Luca Signor Clear advanced filters
  • An environmentally safe means of mosquito control is the application of Bacillus thuringiensis israelensis, which produces a cocktail of four naturally crystalline proteins exclusively toxic to mosquito. Here the authors report the atomic-resolution structures of Bti Cry11Aa and related Btj Cry11Ba solved de novo through Serial Femtosecond Crystallography on naturally-occurring nanocrystals.

    • Guillaume Tetreau
    • Michael R. Sawaya
    • Jacques-Philippe Colletier
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-18
  • A combination of proteomics and structural analyses reveals the assembly mechanism of transcription factor TFIID in human cells and identifies the chaperonin CCT as a checkpoint in the process.

    • Simona V. Antonova
    • Matthias Haffke
    • Imre Berger
    Research
    Nature Structural & Molecular Biology
    Volume: 25, P: 1119-1127
  • Bacillus thuringiensis israelensis (Bti) produces the naturally-crystalline proteinaceous toxin Cyt1Aa that is toxic to mosquito larvae. Here the authors grow recombinant nanocrystals of the Cyt1Aa protoxin in vivo and use serial femtosecond crystallography to determine its structure at different redox and pH conditions and by combining their structural data with further biochemical, toxicological and biophysical analyses provide mechanistic insights into the Cyt1Aa bioactivation cascade.

    • Guillaume Tetreau
    • Anne-Sophie Banneville
    • Jacques-Philippe Colletier
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Binding of bacterial peptidoglycan muramyl dipeptides induces NOD2 activation and signalling via the downstream adaptor kinase RIP2. Here the authors show that RIP2 forms filaments via its CARD domain, analyse the structure of the CARD filaments and demonstrate the requirement of RIP2 polymerisation for the activation of NF-κB by NOD2.

    • Erika Pellegrini
    • Ambroise Desfosses
    • Stephen Cusack
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-19