Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–8 of 8 results
Advanced filters: Author: Lukas Postler Clear advanced filters
  • A deterministic correction of errors caused by qubit loss or leakage outside the computational space is demonstrated in a trapped-ion experiment by using a minimal instance of the topological surface code.

    • Roman Stricker
    • Davide Vodola
    • Rainer Blatt
    Research
    Nature
    Volume: 585, P: 207-210
  • Quantum error correction is essential for reliable quantum computing, but no single code supports all required fault-tolerant gates. The demonstration of switching between two codes now enables universal quantum computation with reduced overhead.

    • Ivan Pogorelov
    • Friederike Butt
    • Thomas Monz
    Research
    Nature Physics
    Volume: 21, P: 298-303
  • Qubit-based simulations of gauge theories are challenging as gauge fields require high-dimensional encoding. Now a quantum electrodynamics model has been demonstrated using trapped-ion qudits, which encode information in multiple states of ions.

    • Michael Meth
    • Jinglei Zhang
    • Martin Ringbauer
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 570-576
  • Demonstrations of quantum advantage relying on sampling hard-to-compute probability distributions are plagued by difficulties in efficiently confirming the correctness of their output, which is known as the verification problem. Here, the authors use a trapped-ion platform to demonstrate efficient verification of quantum random sampling in measurement-based quantum computing.

    • Martin Ringbauer
    • Marcel Hinsche
    • Dominik Hangleiter
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Qudits are generalizations of qubits that have more than two states, which gives them a performance advantage in some quantum algorithms. The operations needed for a universal qudit processor have now been demonstrated using trapped ions.

    • Martin Ringbauer
    • Michael Meth
    • Thomas Monz
    Research
    Nature Physics
    Volume: 18, P: 1053-1057
  • A fault-tolerant, universal set of single- and two-qubit quantum gates is demonstrated between two instances of the seven-qubit colour code in a trapped-ion quantum computer.

    • Lukas Postler
    • Sascha Heuβen
    • Thomas Monz
    Research
    Nature
    Volume: 605, P: 675-680
  • Two logical qubits are encoded in ensembles of four physical qubits through the surface code, then entangled by lattice surgery, which is a protocol for carrying out fault-tolerant operations.

    • Alexander Erhard
    • Hendrik Poulsen Nautrup
    • Thomas Monz
    Research
    Nature
    Volume: 589, P: 220-224
  • Checking the quality of operations of quantum computers in a reliable and scalable way is still an open challenge. Here, the authors show how to characterise multi-qubit operations in a way that scales favourably with the system’s size, and demonstrate it on a 10-qubit ion-trap device.

    • Alexander Erhard
    • Joel J. Wallman
    • Rainer Blatt
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-7