Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 597 results
Advanced filters: Author: Margaret Cruz Clear advanced filters
  • PROTAC development has surged in popularity, however our ability to characterize PROTAC specificity in living cells has lagged behind. Here, the authors develop ProtacID, a flexible proximity-dependent biotinylation (BioID)-based approach to identify PROTAC-protein interactions in living cells.

    • Suman Shrestha
    • Matthew E. R. Maitland
    • Brian Raught
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Basal cells, rather than neuroendocrine cells, have been identified as the probable origin of small cell lung cancer and other neuroendocrine–tuft cancers, explaining neuroendocrine–tuft heterogeneity and offering new perspectives for targeting lineage plasticity.

    • Abbie S. Ireland
    • Daniel A. Xie
    • Trudy G. Oliver
    ResearchOpen Access
    Nature
    P: 1-11
  • Thomas, Egan et al. report that hexokinase 2 localizes to the nucleus of leukaemic and normal haematopoietic cells to maintain stemness by interacting with nuclear proteins and modulating chromatin accessibility independently of its kinase activity.

    • Geethu Emily Thomas
    • Grace Egan
    • Aaron D. Schimmer
    ResearchOpen Access
    Nature Cell Biology
    Volume: 24, P: 872-884
  • Type I PRMT inhibition elicits potent antitumor activity associated with increased interferon response and intron-retained dsRNA accumulation, suggesting its potential combination with immune checkpoint inhibitors for cancer treatment.

    • Qin Wu
    • David Y. Nie
    • Cheryl H. Arrowsmith
    ResearchOpen Access
    Nature Chemical Biology
    Volume: 18, P: 821-830
  • Previous work shows that a small population of quiescent SOX2+ medulloblastoma (MB) stem cells can drive tumour growth in early tumorigenesis and relapse. Here, the authors identify OLIG2 as a transcriptional mediator of the transition from quiescent to rapidly proliferating progenitor states and therapeutically target this axis in preclinical models of MB.

    • Kinjal Desai
    • Siyi Wanggou
    • Peter B. Dirks
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • A study of several longitudinal birth cohorts and cross-sectional cohorts finds only moderate overlap in genetic variants between autism that is diagnosed earlier and that diagnosed later, so they may represent aetiologically different conditions.

    • Xinhe Zhang
    • Jakob Grove
    • Varun Warrier
    ResearchOpen Access
    Nature
    P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Neutrophil extracellular traps (NETs) are known to promote metastasis in mouse models. Here the authors show plasma redox imbalance caused by albumin oxidation to induce inflammation-independent NETosis and lung metastasis, and albumin oxidation and reduced plasma free thiol to be associated with lung metastasis in a cohort of head and neck cancer patients.

    • Minoru Inoue
    • Ryota Nakashima
    • Scott V. Bratman
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-11
  • N6-methyladenosine (m6A) modification of mRNA regulates gene expression in eukaryotes. Here, Zeng et al. show that m6A modification of mRNAs contributes to protection against the pathogen Helicobacter pylori by downregulating a host protein that acts as receptor for the pathogen.

    • Judeng Zeng
    • Chuan Xie
    • William K. K. Wu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • The PEAK family of pseudokinases is known to play oncogenic roles in poor-prognosis triple negative breast cancer (TNBC). Here this group identifies the role of calcium/calmodulin-dependent protein kinase 2 (CAMK2) in targeting downstream of PEAK1 thereby utilizing RA306 (CAMK2 inhibitor) to effectively attenuate TNBC xenograft growth and block metastasis as well.

    • Xue Yang
    • Xiuquan Ma
    • Roger J. Daly
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Functional characterization of genetic alterations is a prerequisite for pancreatic cancer precision medicine. Here, using in vivo CRISPR screens, the authors integrate human cancer genomics and mouse models, identifying that loss of USP15 or SCAF1 accelerates tumor development and leads to reduced inflammatory responses and increased sensitivity to PARP inhibition and Gemcitabine.

    • Sebastien Martinez
    • Shifei Wu
    • Daniel Schramek
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • The origin and source of mammary gland progenitors and how they interact with the adipose‐rich stroma is unclear. Here, the authors identify PDGFRα+ adipocyte progenitors in the murine mammary stroma as a mesenchymal cell lineage recruited into the expanding epithelium during development, hormone exposure and pregnancy.

    • Purna A. Joshi
    • Paul D. Waterhouse
    • Rama Khokha
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-14
  • Reduced expression of DICER—responsible for the processing of microRNA precursors—was previously linked to poor clinical outcomes in cancer patients. Here, the authors uncover an epigenetic mechanism by which hypoxia suppresses DICER expression and deregulates the miR-200-Zeb1 circuit in breast cancer to promote the tumour phenotype.

    • Twan van den Beucken
    • Elizabeth Koch
    • Bradly G. Wouters
    Research
    Nature Communications
    Volume: 5, P: 1-13
  • Dnmt3a mutations in mouse haematopoietic stem and progenitor cells equivalent to R882 mutations in human cause increased mitochondrial respiration, suggesting that this is a mechanism of clonal haematopoiesis and a potential therapeutic target.

    • Mohsen Hosseini
    • Veronique Voisin
    • Steven M. Chan
    Research
    Nature
    Volume: 642, P: 421-430
  • Genetic variants at multiple loci of chr5p15.33 have been associated with susceptibility to numerous cancers. Here the authors show that the association of one of these loci may be explained by a variant, rs36115365, influencing telomerase reverse transcriptase (TERT) expression via ZNF148.

    • Jun Fang
    • Jinping Jia
    • Laufey T. Amundadottir
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-17
  • A high-throughput small-molecule drug screening platform enabled the detection of compounds targeting the functional interactions of receptor tyrosine kinases and identifies four new EGFR triple-mutant inhibitors.

    • Punit Saraon
    • Jamie Snider
    • Igor Stagljar
    Research
    Nature Chemical Biology
    Volume: 16, P: 577-586
  • Electrical excitability in neuroendocrine SCLC cells promotes tumour progression through action potential firing, increasing ATP demand and oxidative phosphorylation dependency, whereas non-neuroendocrine cells provide metabolic support, driving a tumour-autonomous cycle that enhances tumorigenesis and metastasis.

    • Paola Peinado
    • Marco Stazi
    • Leanne Li
    ResearchOpen Access
    Nature
    Volume: 639, P: 765-775
  • Using viral barcode tracing to detect interactions between glioblastoma cells and non-malignant astrocytes in patient samples, investigators discovered a pathway that reduces tumour-specific immunity and identified potential therapeutic targets.

    • Brian M. Andersen
    • Camilo Faust Akl
    • Francisco J. Quintana
    Research
    Nature
    Volume: 644, P: 1097-1106
  • Here the authors show that the nucleus undergoes a transient ‘metamorphosis’ within a nuclear–cytoplasmic DNA damage response linked to health and disease. Through this process, the nuclear envelope projects tubules that capture damaged DNA, mediating its repair.

    • Mitra Shokrollahi
    • Mia Stanic
    • Karim Mekhail
    Research
    Nature Structural & Molecular Biology
    Volume: 31, P: 1319-1330