Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 225 results
Advanced filters: Author: Mark E. Conrad Clear advanced filters
  • Melting ice and associated sea-level change will expose new land in Antarctica. Here the authors quantify this change and combine it with our understanding of known Antarctic mineral occurrences, showing that substantial mineral deposits may become accessible over the next few centuries in Antarctica.

    • Erica M. Lucas
    • Fred D. Richards
    • Jerry X. Mitrovica
    Research
    Nature Climate Change
    P: 1-8
  • The APOE-ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease, but it is not deterministic. Here, the authors show that common genetic variation changes how APOE-ε4 influences cognition.

    • Alex G. Contreras
    • Skylar Walters
    • Timothy J. Hohman
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • Genome-wide association meta-analysis identifies 58 independent risk loci for major anxiety disorders among individuals of European ancestry and implicates GABAergic signaling as a potential mechanism underlying genetic risk for these disorders.

    • Nora I. Strom
    • Brad Verhulst
    • John M. Hettema
    ResearchOpen Access
    Nature Genetics
    Volume: 58, P: 275-288
  • Genome-wide association studies incorporating data for populations of African ancestry provide an expanded view of the genetic basis of schizophrenia, which has previously been studied mainly in European and East Asian cohorts.

    • Tim B. Bigdeli
    • Chris Chatzinakos
    • Panos Roussos
    Research
    Nature
    P: 1-10
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Here they reveal how DNA methylation and chromatin accessibility shape how stem cells respond to differentiation signals and uncover an ERK-driven mechanism that guides the formation of diverse tissues during mammalian development.

    • Niels Alvaro Menezes
    • Kathryn Johanna Peterson
    • Elisabetta Ferretti
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Operating devices that can navigate biomedical fluids and tissues is one of the ultimate goals of microrobotics. Whilst the current designs are restricted to non-reciprocal actuations, Qiu et al. report swimming via simple reciprocal motion by exploiting the non-Newtonian rheology of viscous fluids.

    • Tian Qiu
    • Tung-Chun Lee
    • Peer Fischer
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-8
  • Our knowledge of life in the Carboniferous Period is largely restricted to low-lying wetlands dated to 315–310 million years ago. Here, the authors present an older Lagerstätte on an alluvial fan 320–318 million years ago, preserving a diverse ecosystem of vertebrates, invertebrates, plants, and plant-insect interactions.

    • Richard J. Knecht
    • Jacob S. Benner
    • Naomi E. Pierce
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • As presented at the ESMO Congress 2025: Results of the phase 2/3 AGITG DYNAMIC-III trial show that de-escalated chemotherapy based on ctDNA-negative status in patients with stage III colon cancer did not meet non-inferiority for 3-year recurrence-free survival when compared to standard of care, although it enables better informed treatment decisions.

    • Jeanne Tie
    • Yuxuan Wang
    • Petr Kavan
    Research
    Nature Medicine
    Volume: 31, P: 4291-4300
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • The goal of the 1000 Genomes Project is to provide in-depth information on variation in human genome sequences. In the pilot phase reported here, different strategies for genome-wide sequencing, using high-throughput sequencing platforms, were developed and compared. The resulting data set includes more than 95% of the currently accessible variants found in any individual, and can be used to inform association and functional studies.

    • Richard M. Durbin
    • David Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 467, P: 1061-1073
  • Harnessing information from whole genome sequencing in 185 individuals, this study generates a high-resolution map of copy number variants. Nucleotide resolution of the map facilitates analysis of structural variant distribution and identification of the mechanisms of their origin. The study provides a resource for sequence-based association studies.

    • Ryan E. Mills
    • Klaudia Walter
    • Jan O. Korbel
    Research
    Nature
    Volume: 470, P: 59-65
  • A survey of sharks and rays on coral reefs within 66 marine protected areas across 36 countries showcases that the conservation benefits of full MPA protection to sharks almost double when accompanied by effective fisheries management.

    • Jordan S. Goetze
    • Michael R. Heithaus
    • Demian D. Chapman
    Research
    Nature Ecology & Evolution
    Volume: 8, P: 1118-1128
  • Exome sequencing and copy number analysis are used to define genomic aberrations in early sporadic pancreatic ductal adenocarcinoma; among the findings are mutations in genes involved in chromatin modification and DNA damage repair, and frequent and diverse somatic aberrations in genes known as embryonic regulators of axon guidance.

    • Andrew V. Biankin
    • Nicola Waddell
    • Sean M. Grimmond
    Research
    Nature
    Volume: 491, P: 399-405
  • Samples of different body regions from hundreds of human donors are used to study how genetic variation influences gene expression levels in 44 disease-relevant tissues.

    • François Aguet
    • Andrew A. Brown
    • Jingchun Zhu
    ResearchOpen Access
    Nature
    Volume: 550, P: 204-213
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • A large empirical assessment of sequence-resolved structural variants from 14,891 genomes across diverse global populations in the Genome Aggregation Database (gnomAD) provides a reference map for disease-association studies, population genetics, and diagnostic screening.

    • Ryan L. Collins
    • Harrison Brand
    • Michael E. Talkowski
    ResearchOpen Access
    Nature
    Volume: 581, P: 444-451
  • Fishing has had a profound impact on global reef shark populations, and the absence or presence of sharks is strongly correlated with national socio-economic conditions and reef governance.

    • M. Aaron MacNeil
    • Demian D. Chapman
    • Joshua E. Cinner
    Research
    Nature
    Volume: 583, P: 801-806