Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–2 of 2 results
Advanced filters: Author: Nathaniel S. Sickerman Clear advanced filters
  • The M-cluster in the active site of nitrogenase is derived from an 8Fe core assembled via coupling and rearrangement of two [Fe4S4] clusters concomitant with the insertion of an interstitial carbon and a ninth sulfur. Now, by combining synthetic [Fe4S4] clusters and assembly with a protein template, it has been shown that sulfite gives rise to the ninth sulfur that is inserted into the nitrogenase cofactor after the radical SAM-dependent carbide insertion and cofactor core rearrangement.

    • Kazuki Tanifuji
    • Chi Chung Lee
    • Markus W. Ribbe
    Research
    Nature Chemistry
    Volume: 10, P: 568-572
  • The Fe protein of nitrogenase contains a redox-active [Fe4S4] cluster that plays a key role in electron transfer and substrate reduction. Here, Hu and co-workers show that the Fe protein of Methanosarcina acetivorans can reduce CO2 and CO to hydrocarbons under ambient conditions.

    • Martin T. Stiebritz
    • Caleb J. Hiller
    • Yilin Hu
    Research
    Nature Catalysis
    Volume: 1, P: 444-451