Precise control of colloidal-semiconductor-quantum-dots (CQD) assembly morphologies and the related carrier transport characteristics are vital to advance their utilisations. Each application requires different assembly types to exploit either the quantum confinement effect or the large surface-to-volume ratio. On-demand control of CQD-solids‘ morphology are demonstrated using variety of assembly methods. Employment of the electric-double-layer gating on varieties of CQD solids reveals their intrinsic carrier transport and accumulation characteristics. Compact superlattice structure shows high conductivity, and the hierarchical porous assembly exhibits high carrier accumulations. These flexibilities in assembly controls and characteristic tunings signify CQD versatilities as building blocks for different modern electronics.
- Ricky Dwi Septianto
- Liming Liu
- Satria Zulkarnaen Bisri