Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–16 of 16 results
Advanced filters: Author: P. Kotter Clear advanced filters
  • The yeast Saccharomyces cerevisiae is the pre-eminent organism for the study of basic functions of eukaryotic cells1. All of the genes of this simple eukaryotic cell have recently been revealed by an international collaborative effort to determine the complete DNA sequence of its nuclear genome. Here we describe some of the features of chromosome XII.

    • M. Johnston
    • L. Hillier
    • J. D. Hoheisel
    Research
    Nature
    Volume: 387, P: 87-90
  • Large-scale systematic sequencing has generally depended on the availability of an ordered library of large-insert bacterial or viral genomic clones for the organism under study. The generation of these large insert libraries, and the location of each clone on a genome map, is a laborious and time-consuming process. In an effort to overcome these problems, several groups have successfully demonstrated the viability of the whole-genome random ‘shotgun’ method in large-scale sequencing of both viruses and prokaryotes1–5. Here we report the sequence of Saccharomyces cerevisiae chromosome IX, determined in part by a whole-chromosome ‘shotgun’, and describe the particular difficulties encountered in the random ‘shotgun’ sequencing of an entire eukaryotic chromosome. Analysis of this sequence shows that chromosome IX contains 221 open reading frames (ORFs), of which approximately 30% have been sequenced previously. This chromosome shows features typical of a small Saccharomyces cerevisiae chromosome.

    • C. Churcher
    • S. Bowman
    • B. Barrell
    Research
    Nature
    Volume: 387, P: 84-87
  • This directory was made possible by a unique international collaboration between the 633 scientists whose names appear below. It represents both the first published description of the complete sequence of most chromsomes from Saccharomyces cerevisiae, and the first published overview of the entire sequence. As such, the authors would like future papers referring to the entire sequence and/or its contents to cite this directory; future papers referring to the sequence of individual chromosomes should refer to the papers listed at the head of page 9. The authors’ affiliations appear in the papers describing the individual chromosomes.

    • A. Goffeau
    • R. Aert
    • E. Zumstein
    Editorial
    Nature
    Volume: 387, P: 5
  • Yeast exhibit oscillations that share features with circadian rhythms. The authors show that bioenergetic constraints promote oscillatory behaviour: resources are stored until supplies can support translational bursting, this is licensed by ion transport and release from membrane-less compartments.

    • John S. O’Neill
    • Nathaniel P. Hoyle
    • Helen C. Causton
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-11
  • The complete nucleotide sequence of Saccharomyces cerevisiae chromosome VII has 572 predicted open reading frames (ORFs), of which 341 are new. No correlation was found between G+C content and gene density along the chromosome, and their variations are random. Of the ORFs, 17% show high similarity to human proteins. Almost half of the ORFs could be classified in functional categories, and there is a slight increase in the number of transcription (7.0 %) and translation (5.2 %) factors when compared with the complete S. cerevisiae genome. Accurate verification procedures demonstrate that there are less than two errors per 10,000 base pairs in the published sequence.

    • H. Tettelin
    • M. L. Agostoni Carbone
    • K. Kleine
    Research
    Nature
    Volume: 387, P: 81-84
  • Studies on 3D bioartificial cardiac tissues reveal the impacts of hypertrophic cardiomyopathy-associated RAF1 mutations on sarcomere structure, contractile behavior, Ca2+ handling, and intracellular signaling.

    • Saeideh Nakhaei-Rad
    • Fereshteh Haghighi
    • Mohammad R. Ahmadian
    ResearchOpen Access
    Communications Biology
    Volume: 6, P: 1-18
  • A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.

    • Marnix H Medema
    • Renzo Kottmann
    • Frank Oliver Glöckner
    Comments & OpinionOpen Access
    Nature Chemical Biology
    Volume: 11, P: 625-631