Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–15 of 15 results
Advanced filters: Author: Pedram Roushan Clear advanced filters
  • Topological insulators are materials in which a relativistic effect known as spin–orbit coupling gives rise to surface states that resemble chiral edge modes in quantum Hall systems, but with unconventional spin textures. It has been suggested that a feature of such spin-textured boundary states is their insensitivity to spin-independent scattering, which is thought to protect them from backscattering. Here, scanning tunnelling spectroscopy and angle-resolved photoemission spectroscopy are used to confirm this prediction.

    • Pedram Roushan
    • Jungpil Seo
    • Ali Yazdani
    Research
    Nature
    Volume: 460, P: 1106-1109
  • Topological surface states are a class of electronic states that might be of interest in quantum computing or spintronic applications. They are predicted to be robust against imperfections, but so far there has been no evidence that these states do transmit through naturally occurring surface defects. Here, scanning tunnelling microscopy has been used to show that topological surface states of antimony can be transmitted through naturally occurring barriers that block non-topological surface states of common metals.

    • Jungpil Seo
    • Pedram Roushan
    • Ali Yazdani
    Research
    Nature
    Volume: 466, P: 343-346
  • Helical Dirac fermion states in topological insulators could enable dissipation-free spintronics and robust quantum information processors. A study of the influence of disorder on these states shows that although they are resilient against backscattering by magnetic impurities, fluctuations caused by charge impurities could cause problems for such applications.

    • Haim Beidenkopf
    • Pedram Roushan
    • Ali Yazdani
    Research
    Nature Physics
    Volume: 7, P: 939-943
  • Accurately estimating Hamiltonian parameters of a quantum system is crucial in the development of large-scale analog quantum simulators. Here, the authors develop and experimentally demonstrate an algorithm to robustly learn Hamiltonian parameters of bosonic systems undergoing dynamical evolution.

    • Dominik Hangleiter
    • Ingo Roth
    • Pedram Roushan
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-12
  • Ensuring high-fidelity quantum gates while increasing the number of qubits poses a great challenge. Here the authors present a scalable strategy for optimizing frequency trajectories as a form of error mitigation on a 68-qubit superconducting quantum processor, demonstrating high single- and two-qubit gate fidelities.

    • Paul V. Klimov
    • Andreas Bengtsson
    • Hartmut Neven
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • Physical realizations of qubits are often vulnerable to leakage errors, where the system ends up outside the basis used to store quantum information. A leakage removal protocol can suppress the impact of leakage on quantum error-correcting codes.

    • Kevin C. Miao
    • Matt McEwen
    • Yu Chen
    ResearchOpen Access
    Nature Physics
    Volume: 19, P: 1780-1786
  • The study of complexity in quantum systems is a fascinating topic, which however is still in its infancy, especially at the experimental level. Here, the authors report on the observation of “small-world” characteristics in the network of quantum correlations within chains of up to 23 superconducting qubits long.

    • Eric B. Jones
    • Logan E. Hillberry
    • Lincoln D. Carr
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-7
  • A study establishes a scalable approach to engineer and characterize a many-body-localized discrete time crystal phase on a superconducting quantum processor.

    • Xiao Mi
    • Matteo Ippoliti
    • Pedram Roushan
    ResearchOpen Access
    Nature
    Volume: 601, P: 531-536
  • It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware.

    • Matthew P. Harrigan
    • Kevin J. Sung
    • Ryan Babbush
    Research
    Nature Physics
    Volume: 17, P: 332-336
  • Quantum supremacy is demonstrated using a programmable superconducting processor known as Sycamore, taking approximately 200 seconds to sample one instance of a quantum circuit a million times, which would take a state-of-the-art supercomputer around ten thousand years to compute.

    • Frank Arute
    • Kunal Arya
    • John M. Martinis
    Research
    Nature
    Volume: 574, P: 505-510
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926
  • This Review Article surveys the physics of many-body quantum states formed by microwave photons in circuit quantum electrodynamics environments.

    • Iacopo Carusotto
    • Andrew A. Houck
    • Jonathan Simon
    Reviews
    Nature Physics
    Volume: 16, P: 268-279