We report a microfluidic chip integrated with a bioengineered membrane for two-dimensional (2D) and three-dimensional (3D) spheroid tissue cultures to achieve deterministic patterning of cells. The cell-supporting membrane was selectively deposited with extracellular matrix molecules. Results show cell-trapping rate attains 97%. Tuning of the surface enables not only highly controlled geometry of the monolayer (2D) cell mass but also 3D culture of uniformly sized multicellular spheroids. The 3D spheroids of human ovarian epithelial cancer cells acquired mesenchymal traits—increased expressions of N-cadherin, vimentin and fibronectin—and lowered expression of epithelial marker (CD326/epithelial cell adhesion molecule) compared with that in 2D cultures, indicative of epithelial–mesenchymal transition. These results offer new opportunities to achieve active control of 2D cellular patterns and 3D multicellular spheroids on demand, and may be amenable toward study of the metastatic process in vitro.
- Ching-Te Kuo
- Chi-Ling Chiang
- Andrew M Wo