Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 91 results
Advanced filters: Author: Ryan Watkins Clear advanced filters
  • The APOE-ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease, but it is not deterministic. Here, the authors show that common genetic variation changes how APOE-ε4 influences cognition.

    • Alex G. Contreras
    • Skylar Walters
    • Timothy J. Hohman
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Here the authors provide an explanation for 95% of examined predicted loss of function variants found in disease-associated haploinsufficient genes in the Genome Aggregation Database (gnomAD), underscoring the power of the presented analysis to minimize false assignments of disease risk.

    • Sanna Gudmundsson
    • Moriel Singer-Berk
    • Anne O’Donnell-Luria
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • KRAB-zinc finger proteins repress retrotransposons and rapidly evolve in mammals. Here, the authors show that ERV insertions drive the emergence and diversification of new KZFP genes in mice, revealing a co-evolutionary mechanism between retroviruses and host repressors.

    • Melania Bruno
    • Sharaf M. Farhana
    • Todd S. Macfarlan
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.

    • Ji Chen
    • Cassandra N. Spracklen
    • Cornelia van Duijn
    Research
    Nature Genetics
    Volume: 53, P: 840-860
  • Large whole-exome sequencing studies have suggested that the genetic architecture of syndromic congenital heart disease (CHD) is different from sporadic forms. Here, Watkins et al. estimate the relative contribution of damaging recessive and de novo genotypes to CHD in 2391 trios and find them to be associated with different gene functions.

    • W. Scott Watkins
    • E. Javier Hernandez
    • Martin Tristani-Firouzi
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-12
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • Identifying sources of quasiparticle poisoning is an active problem in superconducting quantum circuits. Here the authors show that the rate of quasiparticle bursts in a cryogenic calorimeter decreases by two orders of magnitude in a low-stress suspended state, suggesting stress as a key mechanism.

    • Robin Anthony-Petersen
    • Andreas Biekert
    • Jianjie Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • Past genome-wide associate studies have identified hundreds of genetic loci that influence body size and shape when examined one trait at a time. Here, Jeff and colleagues develop an aggregate score of various body traits, and use meta-analysis to find new loci linked to body shape.

    • Janina S. Ried
    • Janina Jeff M.
    • Ruth J. F. Loos
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-11
  • Deep clinical phenotyping at 28–60 days post-discharge of patients who had been hospitalized with COVID-19 and subsequent long-term follow-up with electronic health records reveal evidence of persistent cardio-renal involvement.

    • Andrew J. Morrow
    • Robert Sykes
    • Colin Berry
    ResearchOpen Access
    Nature Medicine
    Volume: 28, P: 1303-1313
  • A large empirical assessment of sequence-resolved structural variants from 14,891 genomes across diverse global populations in the Genome Aggregation Database (gnomAD) provides a reference map for disease-association studies, population genetics, and diagnostic screening.

    • Ryan L. Collins
    • Harrison Brand
    • Michael E. Talkowski
    ResearchOpen Access
    Nature
    Volume: 581, P: 444-451
  • A genomic constraint map for the human genome constructed using data from 76,156 human genomes from the Genome Aggregation Database shows that non-coding constrained regions are enriched for regulatory elements and variants associated with complex diseases and traits.

    • Siwei Chen
    • Laurent C. Francioli
    • Konrad J. Karczewski
    Research
    Nature
    Volume: 625, P: 92-100
  • In this study, Aggarwal and colleagues perform prospective sequencing of SARS-CoV-2 isolates derived from asymptomatic student screening and symptomatic testing of students and staff at the University of Cambridge. They identify important factors that contributed to within university transmission and onward spread into the wider community.

    • Dinesh Aggarwal
    • Ben Warne
    • Ian G. Goodfellow
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • Early life microbiome is affected by factors such as mode of delivery, gestational age at birth and feeding regime. Here, the authors show that gestational age at birth still imprints on the microbiome at four years of age, suggesting a link between altered microbiome in prematurity and long term health implications.

    • Fiona Fouhy
    • Claire Watkins
    • Catherine Stanton
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-10
  • Combination of epidemiology, preclinical models and ultradeep DNA profiling of clinical cohorts unpicks the inflammatory mechanism by which air pollution promotes lung cancer

    • William Hill
    • Emilia L. Lim
    • Charles Swanton
    Research
    Nature
    Volume: 616, P: 159-167
  • This report from the 1000 Genomes Project describes the genomes of 1,092 individuals from 14 human populations, providing a resource for common and low-frequency variant analysis in individuals from diverse populations; hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites, can be found in each individual.

    • Gil A. McVean
    • David M. Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 491, P: 56-65
  • Safely opening university campuses has been a major challenge during the COVID-19 pandemic. Here, the authors describe a program of public health measures employed at a university in the United States which, combined with other non-pharmaceutical interventions, allowed the university to stay open in fall 2020 with limited evidence of transmission.

    • Diana Rose E. Ranoa
    • Robin L. Holland
    • Martin D. Burke
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • A genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis captures the codevelopment of embryonic tissue and extra-embryonic endoderm and mesoderm niche with early haematopoiesis, with potential for drug testing and disease modelling.

    • Joshua Hislop
    • Qi Song
    • Mo R. Ebrahimkhani
    ResearchOpen Access
    Nature
    Volume: 626, P: 367-376
  • Jose Florez, Claudia Langenberg, Erik Ingelsson, Inga Prokopenko, Inês Barroso and colleagues perform large-scale association analyses using the Metabochip to gain further insights into the genetic architecture of glucose regulation. They identify 38 new loci influencing 1 or more glycemic traits and show that many of these loci also modify risk of type 2 diabetes.

    • Robert A Scott
    • Vasiliki Lagou
    • Inês Barroso
    Research
    Nature Genetics
    Volume: 44, P: 991-1005
  • A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.

    • Konrad J. Karczewski
    • Laurent C. Francioli
    • Daniel G. MacArthur
    ResearchOpen Access
    Nature
    Volume: 581, P: 434-443
  • A strategy for inferring phase for rare variant pairs is applied to exome sequencing data for 125,748 individuals from the Genome Aggregation Database (gnomAD). This resource will aid interpretation of rare co-occurring variants in the context of recessive disease.

    • Michael H. Guo
    • Laurent C. Francioli
    • Kaitlin E. Samocha
    Research
    Nature Genetics
    Volume: 56, P: 152-161
  • Rapid extracellular antigen profiling of a cohort of 194 individuals infected with SARS-CoV-2 uncovers diverse autoantibody responses that affect COVID-19 disease severity, progression and clinical and immunological characteristics.

    • Eric Y. Wang
    • Tianyang Mao
    • Aaron M. Ring
    Research
    Nature
    Volume: 595, P: 283-288
  • The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein.

    • Brian J. Willett
    • Joe Grove
    • Emma C. Thomson
    ResearchOpen Access
    Nature Microbiology
    Volume: 7, P: 1161-1179
  • Exome sequencing data from 60,706 people of diverse geographic ancestry is presented, providing insight into genetic variation across populations, and illuminating the relationship between DNA variants and human disease.

    • Monkol Lek
    • Konrad J. Karczewski
    • Daniel G. MacArthur
    ResearchOpen Access
    Nature
    Volume: 536, P: 285-291
  • Chronic infection with SARS-CoV-2 leads to the emergence of viral variants that show reduced susceptibility to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma.

    • Steven A. Kemp
    • Dami A. Collier
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 592, P: 277-282
  • Post-international travel quarantine has been widely implemented to mitigate SARS-CoV-2 transmission, but the impacts of such policies are unclear. Here, the authors used linked genomic and contact tracing data to assess the impacts of a 14-day quarantine on return to England in summer 2020.

    • Dinesh Aggarwal
    • Andrew J. Page
    • Ewan M. Harrison
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-13
  • Sera from vaccinated individuals and some monoclonal antibodies show a modest reduction in neutralizing activity against the B.1.1.7 variant of SARS-CoV-2; but the E484K substitution leads to a considerable loss of neutralizing activity.

    • Dami A. Collier
    • Anna De Marco
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 593, P: 136-141
  • Multi-nucleotide variants (MNV) are genetic variants in close proximity of each other on the same haplotype whose functional impact is difficult to predict if they reside in the same codon. Here, Wang et al. use the gnomAD dataset to assemble a catalogue of MNVs and estimate their global mutation rate.

    • Qingbo Wang
    • Emma Pierce-Hoffman
    • Daniel G. MacArthur
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Upstream open reading frames (uORFs), located in 5’ untranslated regions, are regulators of downstream protein translation. Here, Whiffin et al. use the genomes of 15,708 individuals in the Genome Aggregation Database (gnomAD) to systematically assess the deleteriousness of variants creating or disrupting uORFs.

    • Nicola Whiffin
    • Konrad J. Karczewski
    • James S. Ware
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A novel variant annotation metric that quantifies the level of expression of genetic variants across tissues is validated in the Genome Aggregation Database (gnomAD) and is shown to improve rare variant interpretation.

    • Beryl B. Cummings
    • Konrad J. Karczewski
    • Daniel G. MacArthur
    ResearchOpen Access
    Nature
    Volume: 581, P: 452-458
  • Interactions between proteins and non-proteinaceous biopolymers are essential for life; however, many methods used to characterize these interactions lack precision and display significant biases. Now, a genetically encoded method employing sulfur(vi) fluoride exchange (SuFEx)-based chemical crosslinking has been developed for capturing and analysing protein–RNA and protein–carbohydrate interactions in vivo.

    • Christopher P. Watkins
    • Ryan A. Flynn
    News & Views
    Nature Chemistry
    Volume: 15, P: 5-6
  • Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies.

    • Amy Watson
    • Sreya Ghosh
    • Lee T. Hickey
    Research
    Nature Plants
    Volume: 4, P: 23-29