Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 544 results
Advanced filters: Author: Sam H. Lee Clear advanced filters
  • Members of the SAM-dependent methyltransferase superfamily are involved in the modification of wobble uridine to 5-oxacetyl uridine in Gram-negative bacteria; CmoA converts SAM to carboxy-SAM (Cx-SAM; a metabolite that was unknown previously), and CmoB uses Cx-SAM to convert 5-hydroxyuridine to 5-oxyacetyl uridine in tRNA.

    • Jungwook Kim
    • Hui Xiao
    • Steven C. Almo
    Research
    Nature
    Volume: 498, P: 123-126
  • The APOE-ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease, but it is not deterministic. Here, the authors show that common genetic variation changes how APOE-ε4 influences cognition.

    • Alex G. Contreras
    • Skylar Walters
    • Timothy J. Hohman
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • De novo and inherited dominant variants in genes encoding U4 and U6 small nuclear RNAs are identified in individuals with retinitis pigmentosa. The variants cluster at nucleotide positions distinct from those implicated in neurodevelopmental disorders.

    • Mathieu Quinodoz
    • Kim Rodenburg
    • Carlo Rivolta
    ResearchOpen Access
    Nature Genetics
    Volume: 58, P: 169-179
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The order in which driver mutations of colorectal cancer occur in intestinal epithelium can determine whether clones are positively or negatively selected and can shape subsequent tumour development.

    • Filipe C. Lourenço
    • Iannish D. Sadien
    • Douglas J. Winton
    ResearchOpen Access
    Nature
    Volume: 649, P: 729-738
  • As presented at the ESMO Congress 2025: Results of the phase 2/3 AGITG DYNAMIC-III trial show that de-escalated chemotherapy based on ctDNA-negative status in patients with stage III colon cancer did not meet non-inferiority for 3-year recurrence-free survival when compared to standard of care, although it enables better informed treatment decisions.

    • Jeanne Tie
    • Yuxuan Wang
    • Petr Kavan
    Research
    Nature Medicine
    Volume: 31, P: 4291-4300
  • Separation of CO2 from gas mixtures is a major application focus for porous materials. Now it has been shown that fluorinated non-porous crystalline materials can uptake CO2 via mobile perfluoroalkyl regions, a process resembling the dissolution of CO2 in perfluoroalkanes, while CH4 uptake is hindered. In situ X-ray diffraction data provide insight into the sorption process.

    • Iñigo J. Vitórica-Yrezábal
    • Craig A. McAnally
    • Lee Brammer
    ResearchOpen Access
    Nature Chemistry
    Volume: 17, P: 1705-1711
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • A growing number of compounds are reported to extend lifespan, but it remains unclear whether they reduce mortality across the entire life course or only at specific ages. Here the authors introduce an analytic tool that pinpoints when, for how long, and to what extent presumptive anti-aging treatments alter mortality risk.

    • Nisi Jiang
    • Catherine J. Cheng
    • James F. Nelson
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • T-cell acute lymphoblastic leukemia is a highly aggressive disease with varying recurrence rates. Here, the authors build a single cell transcriptomic atlas of childhood T-cell acute lymphoblastic leukaemia (T-ALL). They identified a distinctive cancer cell state that correlates with high risk, treatment refractory T-ALL.

    • Bram S. J. Lim
    • Holly J. Whitfield
    • David O’Connor
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • The authors find that TDP-43 loss of function—the pathology defining the neurodegenerative conditions ALS and FTD—induces novel mRNA polyadenylation events, which have different effects, including an increase in RNA stability, leading to higher protein levels.

    • Sam Bryce-Smith
    • Anna-Leigh Brown
    • Pietro Fratta
    ResearchOpen Access
    Nature Neuroscience
    Volume: 28, P: 2190-2200
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • High-depth sequencing of non-cancerous tissue from patients with metastatic cancer reveals single-base mutational signatures of alcohol, smoking and cancer treatments, and reveals how exogenous factors, including cancer therapies, affect somatic cell evolution.

    • Oriol Pich
    • Sophia Ward
    • Nicholas McGranahan
    ResearchOpen Access
    Nature
    P: 1-11
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • How polymorphic elements can drive intra-species variation has not been clearly examined. Here the authors show that the polymorphic GLN endogenous retrovirus (ERV) functions as a cis-regulatory element for neighboring genes, leading to differences in how two mouse strains respond to stress.

    • Xuemeng Zhou
    • Tsz Wing Sam
    • Danny Leung
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-18
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Infrared cameras are used for night vision and in medical diagnostics, but currently only present monochrome images. Krishnaet al. demonstrate a monolithically intergrated plasmonic infrared quantum dot camera as a step towards coloured infrared imaging.

    • Sang Jun Lee
    • Zahyun Ku
    • Sam Kyu Noh
    Research
    Nature Communications
    Volume: 2, P: 1-6
  • Electrolyte gating enables the accumulation of large carrier densities in two-dimensional electron systems. Here, the authors demonstrate that a few-atom thick layer of hexagonal boron nitride can dramatically improve carrier mobility in an electrolyte-gated system by limiting chemical reactions and disorder.

    • Patrick Gallagher
    • Menyoung Lee
    • David Goldhaber-Gordon
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-5
  • Neutralising antibody levels are an important correlate of protection for pre-exposure prophylaxis against COVID-19, but it can be difficult to account for immune evasion of emerging virus variants. Here the authors present a variant-adjusted threshold of protection model, developed and validated with data from two clinical trials, which can be used to infer efficacy against any SARS-CoV-2 variant.

    • Rhiannon Edge
    • Sam Matthews
    • Seth Seegobin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14