Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 467 results
Advanced filters: Author: Simon Cook Clear advanced filters
  • Critical life-history traits, like growth and body size, can influence species’ survival. Using more than 7500 observations, this study suggests that the growth performance of marine fish has declined by 9% over the past century as a result of commercial size-based harvesting.

    • Helen F. Yan
    • Hannah V. Watkins
    • David R. Bellwood
    ResearchOpen Access
    Nature Communications
    P: 1-11
  • From 2014–2017, marine heatwaves caused global mass coral bleaching, where the corals lose their symbiotic algae. The authors find, this event exceeded the severity of all prior global bleaching events in recorded history, with approximately half the world’s reefs bleaching and 15% experiencing substantial mortality.

    • C. Mark Eakin
    • Scott F. Heron
    • Derek P. Manzello
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • Baked sediment, heat-shattered artefacts and introduced pyrite in a 400,000-year-old Palaeolithic occupation site in Suffolk, UK provide evidence of intentional fire-making, marking a pivotal moment in human development.

    • Rob Davis
    • Marcus Hatch
    • Nick Ashton
    Research
    Nature
    Volume: 649, P: 631-637
  • A bookkeeping approach shows that disturbed tropical humid forests experienced net aboveground carbon loss during 1990–2020, primarily driven by small but persistent deforestation clearings owing to persistent land-use conversion without forest regrowth.

    • Yidi Xu
    • Philippe Ciais
    • Wei Li
    Research
    Nature
    Volume: 649, P: 375-380
  • This study examines long-term changes in species richness across tropical forests in the Andes and Amazon. Hotter, drier and more seasonal forests in the eastern and southern Amazon are losing species, while Northern Andean forests are accumulating species, acting as a refuge for climate-displaced species.

    • B. Fadrique
    • F. Costa
    • O. L. Phillips
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 10, P: 267-280
  • Three BRAF inhibitors are used to treat melanoma and colorectal cancer. Here, the authors demonstrate that these drugs bind and activate the protein kinase GCN2, a previously unappreciated off-target effect that may modulate tumour cell responses.

    • Rebecca Gilley
    • Andrew M. Kidger
    • Simon J. Cook
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • The authors synthesize bee assemblage data from 681 crop fields across three continents, finding that local pesticide hazards and decreasing adjacent semi-natural habitats both negatively affected wild bee abundance and species richness in crop fields, while pesticides also reduced functional diversity.

    • Anina Knauer
    • Subodh Adhikari
    • Matthias Albrecht
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 10, P: 95-104
  • With over 2,000 newly identified data points, this study estimates 2,525 million m3 of wood fuel removals globally in 2019, approximately 30% higher than previously understood. Global production of wood charcoal is estimated at 70.5 million tonnes, approximately 50% higher than previous values.

    • E. Ashley Steel
    • Oliver Stoner
    • Leonardo R. Souza
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • The study presents an updated global inventory of glacial lake outburst floods, revealing a sharp rise in event frequency since the 1980s and a strong delayed link to climate warming, highlighting growing risks to downstream communities.

    • Taigang Zhang
    • Weicai Wang
    • Tandong Yao
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • Glaciers have profoundly shaped Earth’s surface, but glacial erosion models lack a strong empirical basis. Cook et al. have compiled a dataset that illustrates how the speed at which glaciers move controls the rate at which they erode, and that climate is crucial in modulating glacier sliding speed and erosion rates.

    • Simon J. Cook
    • Darrel A. Swift
    • Richard I. Waller
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-7
  • Colorectal cancer cells can acquire resistance to MEK inhibition due to BRAF or KRAS amplification. Here, the authors show that while MEK inhibitor withdrawal in BRAF mutant cells restores sensitivity to the inhibitor through the loss of BRAF amplification mediated by a p57-dependent mechanism, drug withdrawal from KRAS mutant cells does not restore sensitivity but results in EMT and chemoresistance.

    • Matthew J. Sale
    • Kathryn Balmanno
    • Simon J. Cook
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-22
  • BRAF or MEK1/2 inhibitors are cytostatic in melanoma and the surviving cells develop drug resistance. This study shows that the pro-survival pool is biased towards MCL1 in melanoma so that BRAF or MEK1/2 inhibitors are synthetic lethal with the MCL1 inhibitor AZD5991, improving tumour growth inhibition.

    • Matthew J. Sale
    • Emma Minihane
    • Simon J. Cook
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-19
  • A global research network monitoring the Amazon for 30 years reports in this study that tree size increased by 3% each decade.

    • Adriane Esquivel-Muelbert
    • Rebecca Banbury Morgan
    • Oliver L. Phillips
    ResearchOpen Access
    Nature Plants
    Volume: 11, P: 2016-2025
  • Four decades after a test mining experiment that removed nodules, the biological impacts in many groups of organisms persist, although populations of several organisms have begun to re-establish despite persistent physical changes at the seafloor.

    • Daniel O. B. Jones
    • Maria Belen Arias
    • Adrian G. Glover
    ResearchOpen Access
    Nature
    Volume: 642, P: 112-118
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Geospatial estimates of the prevalence of anemia in women of reproductive age across 82 low-income and middle-income countries reveals considerable heterogeneity and inequality at national and subnational levels, with few countries on track to meet the WHO Global Nutrition Targets by 2030.

    • Damaris Kinyoki
    • Aaron E. Osgood-Zimmerman
    • Simon I. Hay
    ResearchOpen Access
    Nature Medicine
    Volume: 27, P: 1761-1782
  • Wood density is a key control on tree biomass, and understanding its spatial variation improves estimates of forest carbon stock. Sullivan et al. measure >900 forest plots to quantify wood density and produce high resolution maps of its variation across South American tropical forests.

    • Martin J. P. Sullivan
    • Oliver L. Phillips
    • Joeri A. Zwerts
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Comparative analysis of genetic variations of bread wheat accessions created in the last 150 years and 45 related species revealed a major contribution of introgressions and chromosomal rearrangements to cultivated wheat diversity.

    • Alexandra M. Przewieslik-Allen
    • Paul A. Wilkinson
    • Keith J. Edwards
    Research
    Nature Plants
    Volume: 7, P: 172-183
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101