Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 424 results
Advanced filters: Author: Stephanie Lu Clear advanced filters
  • The APOE-ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease, but it is not deterministic. Here, the authors show that common genetic variation changes how APOE-ε4 influences cognition.

    • Alex G. Contreras
    • Skylar Walters
    • Timothy J. Hohman
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • XCR1+ type 1 conventional DCs (cDC1s) are crucial to mount anti-tumor immune responses, however their infiltration within tumours is often limited. Here the authors show that cDC1 infiltration could be expanded by intratumoral delivery of mesenchymal stromal cells engineered to express the membrane bound form of FLT3L in combination with poly(I:C) or CXCL9 and CCL5, improving anti-tumor immunity in preclinical models.

    • Louise Gorline
    • Fillipe Luiz Rosa do Carmo
    • Pierre Guermonprez
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-22
  • The bacterial protein H-NS prevents costly expression of horizontally acquired genes such as those in Salmonella pathogenicity islands (SPIs), which are essential for infection. Here, Kortebi et al. show that the expression of SPI-1 is associated with Salmonella chromatin remodelling and with the repositioning of this region toward the nucleoid periphery.

    • Mounia Kortebi
    • Mickaël Bourge
    • Virginia S. Lioy
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-17
  • Large-effect variants in autism remain elusive. Here, the authors use long-read sequencing to assemble phased genomes for 189 individuals, identifying pathogenic variants in TBL1XR1, MECP2, and SYNGAP1, plus nine candidate structural variants missed by short-read methods.

    • Yang Sui
    • Jiadong Lin
    • Evan E. Eichler
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-16
  • Here, the authors perform large trans-ancestry fine-mapping analyses identifying large numbers of association signals and putative target genes for colorectal cancer risk, advancing our understanding of the genetic and biological basis of this cancer.

    • Zhishan Chen
    • Xingyi Guo
    • Wei Zheng
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • Webb, Toporova and colleagues identify a β-hairpin motif in the kinesin-2 family, which controls motility by sequestering the motor domains from their microtubule track.

    • Stephanie Webb
    • Katerina Toropova
    • Anthony J. Roberts
    ResearchOpen Access
    Nature Structural & Molecular Biology
    Volume: 32, P: 1989-1998
  • Increasing evidence suggests that activation of oncogenic pathways contributes to an unfavorable tumor microenvironment. Here, the authors show that wild-type KRAS plays a key role in immune evasion in hepatocellular carcinoma by impairing interferon-mediated immunity and promoting resistance to immunotherapy via the EGFR/MEK/ERK pathway.

    • Martina Mang Leng Lei
    • Carmen Oi Ning Leung
    • Terence Kin Wah Lee
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Drawing inspiration from helical structures in nature, researchers have developed a cobalt-based complex able to twist and untwist, converting between nanohelix and nanowire structures.

    • Stephanie Greed
    Research Highlights
    Nature Reviews Chemistry
    Volume: 7, P: 596
  • A multi-ancestry genome-wide association study meta-analysis, combined with transcriptome- and methylome-wide association analyses, identifies risk loci associated with colorectal cancer. Credible effector genes and their target tissues are also highlighted, showing that over a third probably act outside the colonic mucosa.

    • Ceres Fernandez-Rozadilla
    • Maria Timofeeva
    • Ulrike Peters
    Research
    Nature Genetics
    Volume: 55, P: 89-99
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Using SCN2A haploinsufficiency as a proof-of-concept, upregulation of the existing functional gene copy through CRISPR activation was able to rescue neurological-associated phenotypes in Scn2a haploinsufficient mice and human neurons.

    • Serena Tamura
    • Andrew D. Nelson
    • Kevin J. Bender
    Research
    Nature
    Volume: 646, P: 983-991
  • Inbreeding depression has been observed in many different species, but in humans a systematic analysis has been difficult so far. Here, analysing more than 1.3 million individuals, the authors show that a genomic inbreeding coefficient (FROH) is associated with disadvantageous outcomes in 32 out of 100 traits tested.

    • David W Clark
    • Yukinori Okada
    • James F Wilson
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-17
  • Engineered, bifunctional receptors present antigens and initiate signaling in response to binding to the cognate T cell receptor. Libraries built with SABRs can screen thousands of epitopes for the discovery of T cell target antigens.

    • Alok V. Joglekar
    • Michael T. Leonard
    • David Baltimore
    Research
    Nature Methods
    Volume: 16, P: 191-198
  • A cross-ancestry meta-analysis of genome-wide association studies identifies association signals for stroke and its subtypes at 89 (61 new) independent loci, reveals putative causal genes, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as potential drug targets, and provides cross-ancestry integrative risk prediction.

    • Aniket Mishra
    • Rainer Malik
    • Stephanie Debette
    ResearchOpen Access
    Nature
    Volume: 611, P: 115-123
  • The goals, resources and design of the NHLBI Trans-Omics for Precision Medicine (TOPMed) programme are described, and analyses of rare variants detected in the first 53,831 samples provide insights into mutational processes and recent human evolutionary history.

    • Daniel Taliun
    • Daniel N. Harris
    • Gonçalo R. Abecasis
    ResearchOpen Access
    Nature
    Volume: 590, P: 290-299
  • A randomized trial in patients hospitalized with COVID-19 showed no benefit and potentially increased harm associated with the use of convalescent plasma, with subgroup analyses suggesting that the antibody profile in donor plasma is critical in determining clinical outcomes.

    • Philippe Bégin
    • Jeannie Callum
    • Donald M. Arnold
    ResearchOpen Access
    Nature Medicine
    Volume: 27, P: 2012-2024
  • Myelofibrosis is a risk factor for the development of Acute Myeloid Leukaemia. Here, the authors carry out an integrated genomic investigation of 933 myelofibrosis patients, and identified interactions between germline and somatic variation in patients who required haematopoietic cell transplantation.

    • Derek W. Brown
    • Weiyin Zhou
    • Mitchell J. Machiela
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-11
  • It is currently unclear if cell-free DNA samples from metastatic cancers are as informative as tissue ones for cancer profiling. Here the authors show that cell-free DNA samples from rapid autopsies capture clonal and subclonal alterations of metastatic tumours and reveal more driver alterations than single tissue samples.

    • Bernard Pereira
    • Christopher T. Chen
    • Dejan Juric
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-13
  • Pooling participant-level genetic data into a single analysis can result in variance stratification, reducing statistical performance. Here, the authors develop variant-specific inflation factors to assess variance stratification and apply this to pooled individual-level data from whole genome sequencing.

    • Tamar Sofer
    • Xiuwen Zheng
    • Kenneth M. Rice
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-14
  • Using data from a single time point, passenger-approximated clonal expansion rate (PACER) estimates the fitness of common driver mutations that lead to clonal haematopoiesis and identifies TCL1A activation as a mediator of clonal expansion.

    • Joshua S. Weinstock
    • Jayakrishnan Gopakumar
    • Siddhartha Jaiswal
    Research
    Nature
    Volume: 616, P: 755-763
  • Inactivating PPP2R1A mutations correlate with better survival after immune checkpoint blockade in patients with ovarian clear cell carcinoma, suggesting that targeting the phosphatase 2A (PP2A) pathway may represent an effective startegy for improving responses to immunotherapy.

    • Yibo Dai
    • Anne Knisely
    • Amir A. Jazaeri
    ResearchOpen Access
    Nature
    Volume: 644, P: 537-546
  • Mutations in WDR62 are the second most common genetic cause of autosomal recessive primary microcephaly, yet the molecular mechanisms underlying this pathogenesis remain unclear. Here, authors demonstrate that WDR62 depletion leads to neural precursor cell depletion and microcephaly via WDR62-CEP170-KIF2A pathway that promotes cilium disassembly.

    • Wei Zhang
    • Si-Lu Yang
    • Jian-Fu Chen
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-14
  • Analysis of 97,691 high-coverage human blood DNA-derived whole-genome sequences enabled simultaneous identification of germline and somatic mutations that predispose individuals to clonal expansion of haematopoietic stem cells, indicating that both inherited and acquired mutations are linked to age-related cancers and coronary heart disease.

    • Alexander G. Bick
    • Joshua S. Weinstock
    • Pradeep Natarajan
    Research
    Nature
    Volume: 586, P: 763-768
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12