Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 2065 results
Advanced filters: Author: T Cooper Clear advanced filters
  • In superconducting circuits, the nonlinearity of Josephson junctions mediates photon interactions, but they are typically dominated by two-photon processes. Here the authors observe multi-photon interactions in a superconducting circuit with Cooper-pair pairing, revealing a new regime of microwave quantum optics.

    • W. C. Smith
    • A. Borgognoni
    • Z. Leghtas
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Pair density modulation, an unusual superconducting state whose superconducting gap is modulated by the wavelength corresponding to the lattice periodicity, is described and observed in exfoliated thin flakes of the iron-based superconductor FeTe0.55Se0.45.

    • Lingyuan Kong
    • Michał Papaj
    • Stevan Nadj-Perge
    Research
    Nature
    Volume: 640, P: 55-61
  • The authors study a YbCoIn5/CeCoIn5/YbRhIn5 heterostructure. Using non-reciprocity in the second harmonic transport response, they demonstrate the existence of a specific form of finite-momentum pairing called a helical superconducting state, where the phase of the order parameter is spontaneously spatially modulated.

    • T. Asaba
    • M. Naritsuka
    • Y. Matsuda
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • Unconventional superconductivity may emerge from the interplay between strong spin–orbit coupling and magnetism. Here, Chen et al. report an anomalous Fraunhofer pattern in three-dimensional topological insulator Bi2Se3 and attribute it as a signature of finite momentum Cooper pairing.

    • Angela Q. Chen
    • Moon Jip Park
    • Nadya Mason
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-9
  • Although quantum phase transitions are attracting increasing attention as the conceptual link between conventional and exotic states of quantum matter—having been implicated, for example, in the properties of high-temperature superconductors—there are few model systems in which they can be studied and understood. Now it is revealed that placing simple elemental chromium under pressure suppresses its normal magnetic state and gives direct experimental access to the underlying quantum phase transition responsible for these changes.

    • R. Jaramillo
    • Yejun Feng
    • T. F. Rosenbaum
    Research
    Nature
    Volume: 459, P: 405-409
  • Experimental evidence of nematic-fluctuation-mediated superconductivity has been observed in an iron-based superconductor near the quantum critical point.

    • Lingyuan Kong
    News & Views
    Nature Physics
    Volume: 21, P: 9-10
  • Terahertz microspectroscopic imaging at subgap millielectronvolt energies of a two-dimensional superfluid plasmon in few-layer Bi2Sr2CaCu2O8+x is demonstrated, allowing the spatial resolution of its deeply subdiffractive terahertz electrodynamics.

    • A. von Hoegen
    • T. Tai
    • N. Gedik
    Research
    Nature
    P: 1-6
  • Antigen presentation in skull bone marrow by hematopoietic stem and progenitor cells induces myelopoiesis and generates CD4+ regulatory T cells in a mouse model of ependymoma, promoting immune tolerance. Treatment with anti-GM-CSF antibody has antitumor effects that are augmented by immunotherapy.

    • Elizabeth Cooper
    • David A. Posner
    • Richard J. Gilbertson
    ResearchOpen Access
    Nature Genetics
    Volume: 58, P: 317-328
  • This study of magic-angle twisted trilayer graphene moiré superconductors using scanning tunnelling microscopy and spectroscopy identifies two energy gaps that develop from many-body resonance in this highly tunable class of materials.

    • Hyunjin Kim
    • Gautam Rai
    • Stevan Nadj-Perge
    Research
    Nature
    Volume: 650, P: 592-598
  • An outstanding question about the iron-based superconductors has been whether or not their magnetic characteristics are dominated by itinerant or localized magnetic moments. Absolute measurements and calculations of the magnetic response of undoped and Ni-doped BaFe2As2 indicate the latter.

    • Mengshu Liu
    • Leland W. Harriger
    • Pengcheng Dai
    Research
    Nature Physics
    Volume: 8, P: 376-381
  • The charge–phase duality in superconductors implies that the well-known SQUID has an analogue based on the interference of fluxons. Such a ‘charge quantum interference device’ (or CQUID) has now been experimentally demonstrated.

    • S. E. de Graaf
    • S. T. Skacel
    • O. V. Astafiev
    Research
    Nature Physics
    Volume: 14, P: 590-594
  • Using torque magnetometry, the thermodynamic signatures of bosonic Landau level transitions are observed in a layered superconductor, owing to the formation of Cooper pairs with finite momentum.

    • A. Devarakonda
    • T. Suzuki
    • J. G. Checkelsky
    Research
    Nature
    Volume: 599, P: 51-56
  • Recently, an orbital Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state was predicted and identified in thin flakes of the transition metal dichalcogenide superconductor 2H-NbSe2. Here, the authors present experimental evidence of the formation of this orbital FFLO state in bulk 2H-NbSe2 samples.

    • Chang-woo Cho
    • Timothée T. Lortz
    • Rolf Lortz
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Pairing interaction appears at room temperature in traditional superconductors with a Cooper instability in the Fermi sea. Here, Maier et al.report that in the pseudogap phase of cuprate, where this instability is absent, superconductivity arises from an increase in the strength of the spin fluctuation pairing interaction as the temperature decreases.

    • T. A Maier
    • P. Staar
    • D. J. Scalapino
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-6
  • The emergence of a giant phonon anomaly in the pseudogap phase of underdoped cuprate superconductors has been assumed to be a consequence of instability towards a charge density wave state. Here, the authors present a theory suggesting the anomaly arises due to large superconducting fluctuations.

    • Ye-Hua Liu
    • Robert M. Konik
    • Fu-Chun Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-6
  • The discovery of an orbital Fulde–Ferrell–Larkin–Ovchinnikov state in the multilayer Ising superconductor 2H-NbSe2, in which the translational and rotational symmetries are broken, enables the preparation of such states in other materials with broken inversion symmetries.

    • Puhua Wan
    • Oleksandr Zheliuk
    • Jianting Ye
    Research
    Nature
    Volume: 619, P: 46-51
  • Exploring the photoionization process leads to better understanding of the fundamental interactions between light and matter. Here the authors show the non-dipole contribution in the form of asymmetric photoelectron angular distribution from the ionization of argon atoms and ions.

    • M. Ilchen
    • G. Hartmann
    • M. Meyer
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-8
  • The authors study epitaxial thin films of the pyrochlore-sublattice compound LiTi2O4 by RIXS and ARPES. They observe cooperation between strong electron correlations and strong electron-phonon coupling, giving rise to a mobile polaronic ground state in which charge motion and lattice distortions are coupled.

    • Zubia Hasan
    • Grace A. Pan
    • Julia A. Mundy
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-9
  • Identifying jets originating from heavy quarks plays a fundamental role in hadronic collider experiments. In this work, the ATLAS Collaboration describes and tests a transformer-based neural network architecture for jet flavour tagging based on low-level input and physics-inspired constraints.

    • G. Aad
    • E. Aakvaag
    • L. Zwalinski
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-22
  • A triangular-lattice organic conductor κ-(BEDT-TTF)4Hg2.89 Br8 is a promising doped spin liquid candidate which also exhibits superconductivity. Here the authors report thermoelectric measurements under pressure and find a quantum critical phase that could be correlated to BEC-like superconductivity.

    • K. Wakamatsu
    • Y. Suzuki
    • K. Kanoda
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-6
  • Finite momentum superconducting pairing refers to a class of unconventional superconducting states where Cooper pairs acquire a non-zero momentum. Here the authors report a new superconducting state in bulk 4Hb-TaS₂, where magnetic fields induce finite momentum pairing via magnetoelectric coupling.

    • F. Z. Yang
    • H. D. Zhang
    • H. Miao
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • When a superconductor is in contact with a normal metal, Cooper pairs from the superconductor ‘leak’ into the metal, causing local superconductivity. When in contact with a ferromagnet, however, Cooper pairs do not stray very far. Therefore, the discovery that a ferromagnetic nanowire goes completely superconducting when placed between two superconducting electrodes is surprising indeed.

    • Jian Wang
    • Meenakshi Singh
    • M. H. W. Chan
    Research
    Nature Physics
    Volume: 6, P: 389-394
  • Van der Waals structures provide a new platform to explore novel physics of superconductor/ferromagnet interfaces. Here, NbSe2 Josephson junction with Cr2Ge2Te6 enables non-trivial Josephson phase by spin-dependent interaction, boosting the study of superconducting states with spin-orbit coupling and phase-controlled quantum electronic device.

    • H. Idzuchi
    • F. Pientka
    • P. Kim
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8
  • Cold atom systems are a playground for new quantum phenomena, one of which might be Majorana fermions – particles that are their own antiparticles. Qu et al. show how a topological superfluid with Fulde–Ferrell pairing might emerge in a spin–orbit-coupled degenerate gas, which could support Majorana fermions.

    • Chunlei Qu
    • Zhen Zheng
    • Chuanwei Zhang
    Research
    Nature Communications
    Volume: 4, P: 1-7
  • A superconductor–graphene junction is shown to exhibit the quantum Hall effect, with the chemical potential of the edge state displaying a sign reversal. Such a system could provide a platform for observing isolated non-Abelian anyonic zero modes.

    • Gil-Ho Lee
    • Ko-Fan Huang
    • Philip Kim
    Research
    Nature Physics
    Volume: 13, P: 693-698
  • In the copper oxide superconductors, spin fluctuations might be involved in the electronic pairing mechanism. The case for such magnetically mediated superconductivity is now strengthened by the discovery of high-energy magnetic excitations that are not affected by chemical doping levels within several cuprates.

    • M. Le Tacon
    • G. Ghiringhelli
    • B. Keimer
    Research
    Nature Physics
    Volume: 7, P: 725-730
  • The performance of superconducting devices can be degraded by quasiparticle generation mechanisms that are difficult to identify and eliminate. Now, a small superconducting island can be kept quasiparticle free for seconds at a time.

    • E. T. Mannila
    • P. Samuelsson
    • J. P. Pekola
    Research
    Nature Physics
    Volume: 18, P: 145-148
  • Realizing topological superconductivity is essential for applicable fault-tolerant quantum computation. Here, Trang et al. report migration of Dirac-cone from TlBiSe2 substrate to top surface of superconducting Pb film due to topological proximity effect, suggesting realization of topological superconductivity.

    • C. X. Trang
    • N. Shimamura
    • T. Sato
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-6
  • Anderson’s theorem states that superconductivity in a conventional superconductor is robust to non-magnetic disorder. Here, the authors demonstrate the protection of Cooper pairs by the extended Anderson theorem in the polar phase of superfluid helium-a spin-triplet superconductor analogue.

    • T. Kamppinen
    • J. Rysti
    • V. B. Eltsov
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • Background radiation has been identified as a key factor limiting the coherence times of superconducting circuits. Here, the authors measure the impact of environmental and cosmic radiation on a superconducting resonator with varying degrees of shielding, including an underground facility.

    • L. Cardani
    • F. Valenti
    • I. M. Pop
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-6
  • A superconducting diode effect is observed at zero magnetic field in twisted trilayer graphene. This suggests that time-reversal symmetry is intrinsically broken and leads to pairing between electrons with non-zero centre-of-mass momentum.

    • Jiang-Xiazi Lin
    • Phum Siriviboon
    • J.I.A. Li
    Research
    Nature Physics
    Volume: 18, P: 1221-1227
  • The crossover between the weak-coupling limit and strong-coupling limit provides important information for quantum bound states of interacting fermions. Here, Kasahara et al. report thermodynamic evidence for prevailing phase fluctuations of superconductivity, highlighting unusual normal state in the BCS-BEC crossover regime.

    • S. Kasahara
    • T. Yamashita
    • Y. Matsuda
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • Mode-selective vibrational excitations can be used to transiently induce a range of phenomena in strongly correlated states of matter. It is now shown that by exciting apical oxygen distortions in the cuprate system YBa2Cu3O6.5, an unusual photoconductive effect is induced both at low and at high temperatures.

    • W. Hu
    • S. Kaiser
    • A. Cavalleri
    Research
    Nature Materials
    Volume: 13, P: 705-711