Filter By:

Journal Check one or more journals to show results from those journals only.
Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–3 of 3 results
Advanced filters: Author: T. J. ZAMB Clear advanced filters
  • Systematic sequencing of the genome of Saccharomyces cerevisiae has revealed thousands of new predicted genes and allowed analysis of long-range features of chromosomal organization. Generally, genes and predicted genes seem to be distributed evenly throughout the genome, having no overall preference for DNA strand. Apart from the smaller chromosomes, which can have substantially lower gene density in their telomeric regions1–3, there is a consistent average of one open reading frame (ORF) approximately every two kilobases. However, one of the most surprising findings for a eukaryote with approximately 6,000 genes was the amount of apparent redundancy in its genome. This redundancy occurs both between individual ORFs and over more extensive chromosome regions, which have been duplicated preserving gene order and orientation4–6. Here we report the entire nucleotide sequence of chromosome XIII, the sixth-largest S. cerevisiae chromosome, and demonstrate that its features and organization are consistent with those observed for other S. cerevisiae chromosomes. Analysis revealed 459 ORFs, 284 have not been identified previously. Both intra- and interchromosomal duplications of regions of this chromosome have occurred.

    • S. Bowman
    • C. Churcher
    • B. Barrell
    Research
    Nature
    Volume: 387, P: 90-93
  • The yeast Saccharomyces cerevisiae is the pre-eminent organism for the study of basic functions of eukaryotic cells1. All of the genes of this simple eukaryotic cell have recently been revealed by an international collaborative effort to determine the complete DNA sequence of its nuclear genome. Here we describe some of the features of chromosome XII.

    • M. Johnston
    • L. Hillier
    • J. D. Hoheisel
    Research
    Nature
    Volume: 387, P: 87-90