Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–2 of 2 results
Advanced filters: Author: Thomas Bohnstingl Clear advanced filters
  • Spiking neural networks and in-memory computing are both promising routes towards energy-efficient hardware for deep learning. Woźniak et al. incorporate the biologically inspired dynamics of spiking neurons into conventional recurrent neural network units and in-memory computing, and show how this allows for accurate and energy-efficient deep learning.

    • Stanisław Woźniak
    • Angeliki Pantazi
    • Evangelos Eleftheriou
    Research
    Nature Machine Intelligence
    Volume: 2, P: 325-336