A creative approach to substantially enhance both the strength and ductility of SLM-printed metal parts was successfully demonstrated on the ubiquitous marine-grade stainless steel 316L. The new discovery improves the strength and ductility of stainless steel parts by ~16% and 40% compared with the typical 3D printing process and conventional manufacturing methods. Control of the crystallographic texture is key for this breakthrough, which was achieved by tailoring the geometrical features of the melt pool involved in the laser-based 3D printing process. The desired <011> crystallographic texture favors the activation of the nano-twinning mechanism, which simultaneously enhances the strength and ductility.
- Zhongji Sun
- Xipeng Tan
- Chee Kai Chua