An electric field-enhanced transport gap is well established in a dual-gated field effect transistor (FET) based on the h-BN/single-layer graphene/h-BN sandwich structure, and the on/off current ratio is increased by a factor of 8.0 compared with pure single-layer graphene FET. The tunable and sizeable band gap and structural integrity render this sandwich structure a promising candidate for high-performance single-layer graphene FETs.
- Ruge Quhe
- Jiaxin Zheng
- Jing Lu