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Calcium phosphate cements for bone engineering and
their biological properties

Hockin HK Xu1,2,3,4,*, Ping Wang1,5,*, Lin Wang1,6,*, Chongyun Bao5, Qianming Chen5, Michael D Weir1,
Laurence C Chow7, Liang Zhao1,8, Xuedong Zhou5 and Mark A Reynolds1

Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the
1980s, extensive research has been conducted to improve their properties, and emerging evidence supports
their increased application in bone tissue engineering. Much effort has been made to enhance the biological
performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability,
bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs,
including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-
vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and
osteogenesis.
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INTRODUCTION
There has been a continuous and fast-paced emergence
of new synthetic biomaterials developed for bone repair
and regeneration over the past several decades. These
biomaterials include metals, polymers, ceramics, bioactive
glasses, calcium sulfates, calcium carbonates and calcium
phosphates (CaPs). Among them, calcium phosphate
cements (CPCs) are promising for clinical applications
due to their advantageous properties including bioactivity,
osteoconductivity, injectability and moldability. The dis-
covery of the first CPC occurred inadvertently via the
observation of calcium phosphate solubility behavior.1–3

Brown and Chow found that the solubilities of tetracalcium
phosphate [TTCP: Ca4(PO4)2O], dicalcium phosphate
(DCPA: CaHPO4) and dicalcium phosphate dehydrate
(DCPD: CaHPO4 2H2O) were much greater than that of
hydroxyapatite (HA) under neutral pH conditions.4 A slurry

containing appropriate amounts of TTCP and DCPD (or
DCPA) led to HA precipitation as an end product and was
capable of self-setting to form a hard mass.2–3 In the
decade following this first discovery, CPCs were approved
by the Food and Drug Administration (FDA) and were
introduced into clinical practice for the treatment of
craniofacial defects5 and bone fractures.6 Since then,
other CPC formulations have been developed, and a
large amount of research has been conducted.7–18

Currently, CPCs are defined as a combination of one or
more calcium phosphate powders which, upon mixing
with a liquid phase, form a paste able to self-set
and harden in situ in the bone defect site to form a
scaffold.19

One of the most important characteristics of CPCs is
their ability to form in situ through a body-temperature
dissolution-precipitation reaction.19 This feature gives rise
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to other beneficial properties such as molding capability
upon mixing,20 injectability that enables minimally inva-
sive application,21 and the ability to serve as a carrier for
drug and biological molecule delivery.22 Early research
on CPCs primarily focused on improved setting, handling
and mechanical properties of CPCs through the tailoring
of many processing parameters such as cement com-
position, additives, porogens, and particle size.23–28 In
recent years, in addition to the development of new
processing technologies in CPC manufacturing, the
paradigm has shifted toward biological responses by
emphasizing the enhancement of biological interactions
of CPCs with cells and tissues as well as their applications
in bone tissue engineering.29–33 Biological responses of
scaffolds are a key factor in the translational application
of biomaterials and their commercialization for clinic
applications. Several meritorious reviews on CPCs have
described their mechanical properties,34–36 processing
approaches,37–38 drug delivery,19,22,39–40 and functional
enhancement by polymeric additives,41 which will not
be repeated here. The present article reviews the major
new developments in CPC processing technologies in
recent years and focuses on novel biological interactions
of CPCs, particularly in the context of stem cell responses
and delivery as well as in vivo bone regeneration. The
various CPC categories described in this article and their
major biological properties are summarized in the dia-
gram in Figure 1.

PRE-FABRICATED CPC SCAFFOLDS AND 3D PRINTING
Although injectability is one of the advantages of CPCs,
pre-fabricated CPC scaffolds are often prepared for two
reasons: (1) To ensure a complete setting reaction
because only fully set CPCs demonstrate excellent tissue
responses. When CPCs fail to set, they cause inflammatory
reactions.42 Therefore, manufacturing pre-fabricated CPCs
ensures complete setting prior to in vivo application. (2) To
facilitate the creation of interconnected macroporous
structures into CPCs. Self-setting CPC scaffolds without
any modification are microporous but not macroporous
and have limited pore interconnections.43 To promote
tissue in-growth and accelerate the CPC degradation rate
and subsequent replacement by bone, macropores were
incorporated into CPCs via two methods: particle leaching
(the addition of water-soluble particles, such as sodium
bicarbonate, mannitol, salt or glucose, that dissolve or
degrade after setting) and gas-foaming (the formation of
air bubbles during the setting period).37,44 In situ setting with
particle leaching has several disadvantages. First, because
the porogens inside the cement have limited exposure to
body fluids, the degradation or solubility of the particles
may be compromised, which leads to limited porosity.45

Second, the in vivo dissolution of some particles may result
in hyperosmosis.46 Third, some porogens may increase the
paste viscosity and impede the injectability of CPC. The
major drawback of in situ application of the gas-foaming
method is the risk of air emboli or emphysema. Therefore,
pre-fabricated CPC scaffolds have been developed to

Figure 1. Schematic diagram summarizing the various CPC categories described in this article and their major biological properties.
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allow more delicate control of the setting process and
macroporous architecture of the scaffolds before in vivo
implantation.
Recently, three-dimensional (3D) printing has rapidly

developed to allow the fabrication of pre-set CPC
scaffolds. 3D printing is an additive manufacturing
process in which geometrical data are used to produce
3D structures by depositing materials layer by layer.47 3D-
printed CPC scaffolds are favored over customization to
meet the specific needs of each patient/defect. The
benefits for clinical applications include easy adaptation
and fixation, reduced surgical time, favorable esthetic
results and minimal waste products. There are several
different techniques for 3D printing, including direct 3D
printing (direct ink writing), fused deposition modeling
(FDM), stereolithography (SLA), and selective laser sinter-
ing (SLS). For a detailed description of each technique,
readers are encouraged to read previous review papers
on this topic.48–49 For CPC scaffolds, binder jetting is the
most commonly employed 3D printing technique.50

Briefly, one or several print heads spray a binder solution
(for example, an aqueous solution) precisely onto a bed
layer of CPC powder. The binder locally joins adjacent
powder particles together and hardens the wetted areas
through the dissolution-precipitation reaction. The process
repeats by spreading another layer of powder and
ejecting binders according to a pass designed by the
computer. This continues until the complete 3D structure is
formed.48 The printability of the material is related to many
parameters such as particle size and size distribution,
morphology and surface area of the powder, roughness
and flowability of the powders, the solubility/wettability/
reactivity of the powder with the binder, and binder drop
size.51 A study investigating beta-tricalcium phosphate
powder suggested that 3D printing was not feasible with
particles either too small (with a mean particle size of
7 μm) or too large (with a mean particle size of 51 μm),
while mean particle sizes in the range of 20–35 μm resulted
in good printing accuracy.51 Small particles tend to
agglomerate under the influence of van der Waals forces.
Very fine or porous particles exhibit low flowability and
high surface roughness. Therefore, these factors greatly
affect the smoothness and homogeneity of the powder
bed, resulting in smearing and poor resolution.51 However,
although large particles have better flowability, they tend
to yield layer displacements due to low powder bed
stability and low accuracy because the resolution is at
least twice the particle size.52 Flowability was shown to be
significantly reduced by decreasing the HA granule size.53

To work with small particle sizes to achieve a high
resolution, strategies such as plasma coating51 and
moisture application54 were attempted to stabilize the
top layer surface and allow particle rearrangement and

wetting while avoiding particle ejection out of the
powder bed. Furthermore, by adding reactive minerals
such as calcium sulfates into calcium phosphate, sig-
nificant improvements to 3D printing parameters are
achieved.55 The dimensional accuracy of printed CPC
scaffolds (powder: alfa-TCP; liquid: Na2HPO4) is ~ 200·μm,
which indicates a good degree of fitting to craniofacial
defects in anatomical models.56 A critical step for
powder-based 3D printing is the removal of the loose
powder inside the pores of the printed scaffold after
printing, a process known as depowdering. Depowdering
is especially challenging when the pores and pore
interconnections are small and found in the innermost
parts of the scaffolds with large dimensions. One possible
solution may be the use of depowdering-friendly designs
with large windows and free-to-move fillers.57 In addition,
layer thickness and printing orientations (parallel to the X,
Y and Z directions) are important for depowdering.58

Shear forces at the powder bed increase with reduced
layer thickness, which leads to the deterioration of the
final printed samples upon depowdering. Depowdering is
easier in scaffolds printed in the X and Y directions than
that in scaffolds printed in the Z direction because of the
distortion in samples printed in the Z direction.58 However,
the relationship between 3D printing parameters and
CPC scaffold quality and performance has yet to be
established and warrants further study.
3D plotting (direct ink writing, direct write assembly,

material extrusion) is another common technique for CPC
3D printing.59 This is an extrusion-based printing technology
in which a paste or viscous materials, instead of powders,
are used as the starting form and deposited as strands via
a nozzle in a layer-by-layer fashion based on predesigned
structures.60 For 3D plotting, the printability is dependent on
even dispersion, viscosity, fluidity, extrusion performance,
setting time of the paste, and the shape stability of the
printed strands to withstand the weight of the structure
during assembly. The setting time for CPCs plays an
important role in controlling the printable time period of
the paste. One study reported the printable time of a CPC
(powder: TECP:DCPA=1:1 molar ratio, liquid/binder: poly-
vinyl alcohol) as only 10·min, which makes printing
difficult.61 With the addition of a mesoporous calcium
silicate, the printable time was increased to approximately
120·min.61 Other optimizations of the direct printing ink
formulation have included the addition of gelatin to
introduce an induction time for the onset of the CPC
setting reaction.62 Specifically, this formula includes Targon
1128 as the dispersant, hydroxypropyl methylcellulose
(HPMC) as the thickening agent, polyethylenimine (PEI)
as the jellifying agent,63 and a ready-to-use oil-based CPC
paste that sets only upon contact with water and thus has
no time limit for printing.59
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A critical issue for printing resolution is nozzle diameter
and the stability of the extruded strands.50 3D plotting has
two advantages: (1) it enables easy printing of a
combination of different materials,64 and (2) due to the

mild conditions, it allows simultaneous cell or growth
factor plotting, known as bioprinting.64–65 Using a two-
channel plotting method, a scaffold with the combina-
tion of an oil-based CPC and an alginate-gellan

a b

c d

e f

g h

Figure 2. Highly sophisticated CPC scaffold structures via 3D plotting. Stereomicroscopic images of CPC scaffolds plotted with 15° (a), 45° (b), 60°
(c) and 90° (d) configurations (change in orientation relative to the layer underneath). Design and printing of a CPC-hydrogel biphasic scaffold:
model of biphasic scaffolds with CPC (white) and a growth factor-loaded hydrogel (red) (e); the printed scaffold (f); 3D reconstructions from micro-
CT data of the biphasic scaffold (g, h). CPC is grayish white. Alginate-gellan hydrogel is blue. (Adapted from Ahlfeld et al.64 with permission.)
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hydrogel was fabricated and laden with growth factor
VEGF, involving a highly sophisticated strand arrange-
ment, pore structure and geometry (Figure 2).64 In
another study, a bone morphogenetic protein 2
(BMP2)-loaded mesoporous silica/CPC porous scaffold
was 3D-plotted and tested in in vitro cell culture and in a
rabbit femur defect model.66 The scaffold promoted the
osteogenic differentiation of human bone marrow stro-
mal cells (hBMSCs) and enhanced vascularization and
osteogenesis compared to the CPC control.66 In terms of
cell-containing bioprinting, hydrogels such as alginate,67

collagen,68 synthetic polymers such as PLGA, and PEG69

are primarily used as bioinks due to their resemblance to
the extracellular matrix (ECM) and good printability. In
some cases, calcium phosphates are added to enhance
cell attachment and osteogenic differentiation, thus
favoring the use of bioink for bone tissue engineering
applications.67

In general, due to the incremental addition of materials,
3D printing allows for not only the easy control of scaffold
shape and geometry but also the control of fine features
such as interconnected porosity, pore size and distribution,
and complex spatial heterogeneity, which are not achiev-
able with traditional strategies.50 The possibility of manu-
facturing customized implants with almost no design
limitations makes 3D printing highly valuable in reconstruc-
tive surgery. However, more extensive research is needed
to optimize the key parameters for successful 3D printing of
CPC scaffolds.

INJECTABLE CPC SCAFFOLDS
Traditional bone grafting requires an open surgical
approach to graft application sites and may be asso-
ciated with complications such as a large surgical scar,
increased pain and a longer post-operative recovery. To
overcome these drawbacks, injectable bone graft
substitutes are used for minimally invasive surgery. Two
main obstacles that inhibit CPC injectability are liquid-
solid phase separation during injection70 and paste
disintegration upon contact with blood or body fluids.71

Phase separation leads to not only the presence of non-
extrudable paste left in the syringe but also extravasation
at the injection site and a decrease in the viscosity and
mechanical strength of CPCs. The disintegration of CPCs
in the body causes inflammatory responses and even
severe consequences such as cement embolism and
cardiovascular deterioration by simulating blood
coagulation.72 Therefore, efforts have been made to
improve CPC injectability. These strategies include the
following: (1) increasing the viscosity of the liquid phase
by adding viscous binders such as chitosan,24 gelatin,73

hyaluronic acid,74 methylcellulose,75 and others; (2)

optimizing the CPC powder in terms of the particle size,
particle size distribution, particle shape, and particle-
particle interactions;76 (3) regulating the setting
reaction;77 and (4) modifying the extrusion parameters
such as CPC mixing and the sizes of the syringes and/or
needles.78 All of these factors were discussed in detail in
a recent review on CPC injectability.70

Recently, many studies have applied various injectable
CPC formulations into animal models for bone
regeneration.79–80 Injectable CPCs containing 50% (volume
ratio) microspheres (poly(lactic-co-glycolic acid) (PLGA),
gelatin (GEL) or poly(trimethylene carbonate) (PTMC))
were implanted into rabbit femoral bone defects. CPC/
GEL had a significantly lower score than all other groups at
the cement-bone interface. Both CPC and CPC/PLGA
showed a better response than CPC/PTMC at 4 weeks, but
there were no significant differences among these three
groups at 8 and 12 weeks.79 A recent study applied a
commercially injectable CPC (Calcibon) with platelet
lysates in bilateral calvarial defects in rats.81 The delivery
of the platelet lysate enhanced bone healing with an
injectable CPC at early healing times. In large animal
models, injectable CPCs have also shown promise for bone
regeneration. For example, injectable CPC/PLGA compo-
sites demonstrated biocompatibility and direct bone
contact for sinus floor augmentation procedures in a sheep
model.82 Another study evaluated the efficiency of local
bisphosphonate delivery via injectable CPC in vertebral
bodies of the lumbar spine of an osteoporotic sheep
model where the consequences of osteoporotic fractures
were highly deleterious in patients. The bisphosphonate-
combined cement in vertebral body bone defects had a
beneficial impact on both bone content and the micro-
architectural properties of the trabecular bone surrounding
the implant.83 These animal studies demonstrated the
promise of using injectable CPCs for bone repair and
regeneration.
Indeed, CPCs have gained clinical acceptance as

valuable bone substitution biomaterials for over 20 years,
and several CPCs are commercially available. Injectable
CPCs were used to repair human periodontal intrabony
defects and showed favorable radiographic results.84

CPCs were also used in young patients for balloon
kyphoplasty instead of polymethylmethacrylate cement.
In most cases, good integration of CPCs in the vertebra
was observed with no radiological signs of osteolysis or
osteonecrosis. Only a few patients showed demineraliza-
tion in follow-up CT scans.85 Several papers reviewing the
properties of injectable CPCs are available for readers who
want additional detail.86–88 The present review focuses on
new developments in CPCs with an emphasis on their
biological interactions and cell delivery as detailed in
subsequent sections.
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BIOLOGICAL REQUIREMENTS AND BIOLOGICAL
RESPONSES OF CPCS
Biocompatibility
Biocompatibility is defined as the property of a material
being compatible with living tissues. Biocompatible
materials do not induce a toxic response when
implanted in the body.89 Biocompatibility is an essential
requirement for tissue-engineered products to support
cellular activities and optimize tissue regeneration with-
out eliciting a cytotoxic effect in those cells or causing
undesirable local or systemic responses in the host. The
end products of the dissolution-precipitation reactions for
CPCs include brushite (DCPD) and apatite (HA or
calcium deficient HA (CDHA)), which are known to be
biocompatible.90 Pre-set CPCs exhibit favorable short-
term and long-term biocompatibility, as evidenced by
many studies evaluating tissue responses in rats,91–92

rabbits,93 dogs,94 sheep,16,32 and goats,95 as well as
various types of cultured cells.24,93,96 However, injectable
CPCs require the completion of the setting reaction to
avoid cytotoxicity, as unset or disintegrated CPCs cause
severe inflammatory responses, blood clotting, and
cement embolism.72,97 Incorporating polymers into CPCs
is a strategy used to improve CPC properties.41 In a
recent study, an injectable macroporous CPC was
prepared by the syringe-foaming method using a hydro-
philic viscous polymeric solution known as silanized-
hydroxypropyl methylcellulose (Si-HPMC).98 Si-HPMC not
only acts as a foaming agent to create macroporous
structures inside CPCs but also endows the CPC paste
with an appealing rheological behavior at the early
stage of setting due to its self-crosslinking properties, thus
improving its injectability and cohesion.98 Indeed, when
this CPC was injected into defective rabbit femurs, no
adverse foreign body reaction was observed at 1 week
and 6 weeks post-implantation.98

Bioactivity
Bioactivity refers to the ability of bone scaffolds to bind
directly to the surrounding bone without the formation of
fibrous tissue.99 Bioactivity is often evaluated by examining
the ability to form apatite on the biomaterial in a simulated
body fluid (SBF) with ion concentrations close to those in
human blood plasma.100 A bioactive material is defined as
one that accelerates apatite crystallization in a solution
supersaturated with respect to hydroxyapatite.100 How-
ever, the validity of using an in vitro SBF test to predict the
in vivo bioactivity of a material has been questioned.101 For
example, Bohner and Lemaitre showed that a bioactivity
test with SBF may not only give false-positive results but also
false-negative results.101 The authors concluded that
“in vitro bioactivity tests in SBF solutions cannot be used

to predict the in vivo bone bonding ability of a material”.
With some improvements to the protocol, these tests may
be used for initial screening. However, the most reliable
evaluation method remains in vivo implantation in a bone
defect.
Bioactivity is one of the most important properties of

CPCs.19 To further enhance CPC bioactivity, bioactive
glass, which is known for its bioactivity, was incorporated
into CPCs.102–103 The bioactive glass acted as a source of
calcium and phosphate ions in the cement setting
reaction. With this addition, increasing apatite formation
was detected on the surface of the CaP compound after
soaking in SBF for 7 days.103 In vivo examination of samples
implanted into rabbit femoral bones indeed showed a
better healing process and more bone growth with the
addition of bioactive glass.103

Osteoconductivity
Osteoconductivity is defined as a biomaterial property that
facilitates the in-growth of new bone into a surface or a
volume in which the biomaterial serves as a scaffold to
guide new bone formation.104 CPCs are osteoconductive
because they permit the attachment, proliferation, migra-
tion and phenotypic expression of bone cells, leading to
the formation of new bone.105–106 Osteoconduction is
related to the architectural geometry of the scaffold.106

Intimate adaptation, fixation and stability of the implant to
the defect site are of critical importance to facilitate the in-
growth of bone tissue. In addition, the scaffold should have
high porosity and interconnectivity with optimal pore sizes
to ensure cell penetration, nutrient exchange and waste
elimination. For bone tissue engineering, an ideal scaffold
should have 60%–80% interconnected porosity with pore
sizes ranging from 150 to 500 μm.107

Osteoconduction also depends on the chemical com-
position of the scaffold. The incorporation of several types
of ions benefit CPC osteoconductivity. For instance, a
silicon CPC (Si-CPC) was developed,108 and the cytocom-
patibility of the Si-doped cement was tested with a human
osteoblast-like cell line (MG-63), which showed enhanced
cell proliferation (up to threefold) over that without Si.
When implanted in a rabbit parietal bone defect model,
significantly greater amounts of new bone were detected
in the 10% Si-CPC group compared to that in the CPC
control group.108 In another study, strontium was incorpo-
rated into CPC (Sr-CPC) to enhance its osteoconductivity
and accelerate its degradation.109 In vitro studies showed
higher osteoblastic cell proliferation rates in Sr-CPC groups.
In vivo studies demonstrated more rapid degradation and
advanced osteoconductivity in the 10% Sr-CPC group
compared to those in the CPC control at 2, 4, 8, 16, and
32 weeks after the operation.109

Bone Research (2017) 17056

Calcium phosphate cements and bone engineering
HHK Xu et al

6



Osteoinductivity
Osteoinduction is defined as the recruitment and stimula-
tion of progenitor cells to differentiate toward the osteo-
blastic lineage.104 CPCs are generally osteoconductive but
not osteoinductive.20 However, several CPCs reportedly
have the ability to form bone in nonosseous sites in vivo
without the addition of osteogenic factors.110 Since this
osteoinductive property is observed for some CPCs but not
others, these materials are described as having “intrinsic”
osteoinductivity.111 This inductive phenomenon is likely
attributable to the combined effects of topography,
composition, and micro and macroporosity of the CPC
scaffolds.111 It is likely that the intricate architecture of the
scaffold permits the entrapment and concentration of
circulating growth factors, such as BMPs and osteopro-
genitor cells, in vivo thus conferring osteoinduction cap-
ability upon the CPCs.111 In addition, CPCs serve as
calcium and phosphate ion sources in vivo. Ca2+, PO4

3-

and HPO4
2- ions are released into the surrounding tissues,

regulate osteoblast functions112 and induce localized ion
supersaturation, which causes the reprecipitation of car-
bonated apatite on the scaffold.113–114 A previous study
proposed a new strategy to regulate bone marrow
mesenchymal stem cell (BMSC) adhesion and osteogenic
differentiation by adding magnesium into the CPC, thus
improving its osteoinductivity.115 A CPC containing 5 wt%
and 10 wt% magnesium not only enhanced BMSC
adhesion but also upregulated osteogenic gene and
protein expression in vitro. An in vivo study demonstrated
that CPC with 5 wt% magnesium achieved the greatest
bone volume at 2 and 8 weeks, confirming its beneficial
osteogenesis effects via the addition of magnesium.115 To
gain or enhance CPC osteoinductivity, novel strategies
such as the addition of osteoprogenitor cells,116–117 growth
factors,118–119 bioactive proteins120–121 or peptides122–123

into CPCs have exhibited favorable effects. Therefore,
novel CPC compositions with intrinsic and engineered
osteoinductivity are highly promising to enhance bone
regeneration.

Biodegradability
Ideally, a CPC scaffold should degrade at the same rate
that new bone forms. CPCs biodegrade primarily via two
mechanisms: a passive resorption process via chemical
dissolution and an active resorption through a cell-
mediated process.124 The degradation of CPCs is tailored
by controlling several factors: (1) physical factors such as
the physical form of the CPC (particulate or bulk), porosity,
surface area, and crystallinity (crystal size, crystal perfec-
tion, and grain size), and so on; (2) chemical factors such
as the composition and ionic substitutions; and (3)
biological factors such as the activation of macrophages

or osteoclasts.125 Enhancing CPC degradation is achieved
by adding rapidly degradable porogens such as PLGA to
generate macropores upon PLGA degradation. PLGA
degrades hydrolytically, leading to the production of lactic
and glycolic acid monomers. The acidic nature of the
resulting byproducts is an additional advantage of PLGAs
in combination with poorly degradable CPCs because
CPCs degrade by acid dissolution.126 After being injected
into a rabbit femoral bone defect model, CPC-PLGA
exhibited favorable bone responses with 455% degrada-
tion and 413% bone formation at 6 weeks and 490%
degradation and 440% bone formation at 26 weeks
postoperation.127 Based on this same mechanism, glucono
delta-lactone (GDL), which has a faster degradation rate
than PLGA, was incorporated into CPCs as acid-producing
microparticles to accelerate CPC degradation.128 Indeed,
histomorphometrical evaluation revealed that CPCs con-
taining 10% of GDL degraded more rapidly and were
replaced by more bone tissue (32.8%) than CPC-PLGA at
2 weeks after implantation in a rabbit femoral bone
defect.128

CPC SCAFFOLD CONSTRUCTS FOR BONE TISSUE
ENGINEERING
Cell delivery
Recent advancements in tissue engineering and regen-
erative medicine have indicated that cell-based thera-
peutics achieve robust regeneration with greater efficacy
and better predictability than methods that do not involve
cell seeding.129 These novel approaches employ scaffold
constructs in combination with living cells to generate cell-
driven, functional tissue rather than filling a defect with a
nonliving scaffold. A tissue-engineered construct acts both
as a scaffold to bridge the defect and as a cell delivery
vehicle. The biomaterial-cell interactions of CPCs with
various types of stem cells, such as BMSCs, umbilical cord
mesenchymal stem cells (UCMSCs), embryonic stem cells
(ESCs), induced pluripotent stem cells (iPSCs), were pre-
viously reviewed.130–131 The present article specifically
explores recent advances in strategies for cell delivery,
specifically highlighting the design of CPC-based scaffolds.
Direct cell seeding onto the porous surfaces of pre-

formed CPC scaffolds is a common approach due to its
simplicity. However, this type of static cell seeding has
limitations, including low seeding efficiency and minimal
cell penetration into the scaffold, leading to non-uniform
cell distribution.132 It is not feasible to directly mix cells into
the CPC paste because the mixing forces, ionic
exchanges and pH fluctuation during CPC setting are
detrimental to cell viability. To address this problem, cell
encapsulation has been proposed to protect cells during
CPC mixing and injection (Figure 3). In a recent study,
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human iPSC-derived MSCs (hiPSC-MSCs) were either pre-
osteoinduced for 2 weeks (OS-hiPSC-MSCs) or transduced
with BMP2 (BMP2-hiPSC-MSCs) to enhance their osteo-
genic capacity.133 The cells were then encapsulated in
rapidly degradable alginate microbeads. The microbeads
were mixed with CPC paste at a ratio of 1:1 and filled into
cranial defects in nude rats.133 The results showed that the
cells maintained good viability inside the microbeads after

injection. Once the CPC set to form a scaffold, the cells
were released as early as 3 days and demonstrated the
up-regulation of osteogenic markers and bone mineral
deposition. Cell-encapsulated groups produced greater
amounts of new bone area in vivo, with 22.5%±7.6%,
38.9%±18.4%, and 44.7%±22.8% for the CPC-hiPSC-MSC,
CPC-OS-hiPSC-MSC, and CPC-BMP2-hiPSC-MSC groups,
respectively, compared to that for the non-cell CPC

g ih

j Alg-Fb MF, 0 d

m n Alg-Fb MF, 2 d

l Alg-Fb MF, 8 dk Alg-Fb MF, 2 d

oAlg-Fb MF, 0 d Alg-Fb MF, 8 d

100 μm

500 μm

200 μm 200 μm 500 μm

500 μm 500 μm200 μm

500 μm 500 μm

a b cDirect-seeding cells 
on CPC, 1 d

Direct-seeding cells 
on CPC, 4 d

Direct-seeding cells 
on CPC, 8 d

200 μm 200 μm 200 μm

d e fAlg-Fb MB, 1 d Alg-Fb MB, 3 d Alg-Fb MB, 7 d

100 μm 100 μm

Alg-Fb MB, 1 d Alg-Fb MB, 3 d Alg-Fb MB, 7 d

Figure 3. Methods of cell delivery via CPCs. Live-dead staining of (1) direct cell seeding on CPC surfaces (a–c); (2) cell encapsulation in alginate–
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control group (15.6%±11.2%) at 12 weeks.133 Furthermore,
the incorporation of cells accelerated the resorption of the
CPC scaffold. The amount of residual CPC in the CPC-
BMP2-hiPSC-MSC group was sevenfold less than that in the
CPC control.133

Recently, rapidly degradable hydrogel fibers were
developed for cell encapsulation and delivery.134 Encap-
sulation of cells inside microfibers possesses several advan-
tages over microbeads. (1) Microfibers are easily
fabricated by using a simple needle extrusion/external
gelation method. To generate microbeads, air injection
and electronic injection are needed to break up alginate
droplets to form microbeads in sizes of several hundred
microns.135 The air flow or electrostatic force during

microbead formation may impose harsh shearing forces
on the cells. Furthermore, the air flow forms “tails” on the
microbeads, which may cause an immune response
in vivo.135 (2) Microfibers with diameters of several hundred
microns and millimeter-scale lengths are relatively easy to
handle. (3) Microfibers provide more space for cellular self-
assembly, throughwhich living cells organize into functional
units, allowing cells to grow, migrate and differentiate in
the extracellular matrix.136 (4) Long microfibers form long
macroporous channels with interconnectivity upon algi-
nate degradation inside CPCs, while microbeads only form
spherical pores with limited interconnectivity. These long
channels improve osteoconductivity and nutrient and
waste exchange of the scaffold. (5) Long microfibers
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potentially facilitate the formation of blood vessels in CPCs
for bone engineering via co-seeding of endothelial cells
and osteoblasts.
Recent studies have encapsulated six types of stem

cells, specifically hBMSCs, human dental pulp stem
cells (hDPSCs), hUCMSCs, hESC-MSCs, and hiPSC-MSCs
derived from bone marrow (BM-hiPSC-MSCs) and foreskin
(FS-hiPSC-MSCs), in hydrogel microfibers and then delivered

them inside an injectable CPC.126–127 The CPC paste
encapsulating the stem cells was fully injectable under a
small injection force, and the injection exerted no harmful
effects on cell viability.137 The porosity of the microfiber-
CPC construct was 62%.138 All six types of cells proliferated
well and differentiated down the osteogenic lineage.
hUCMSCs, hESC-MSCs, hDPSCs, BM-hiPSC-MSCs and
hBMSCs exhibited high ALP, RUNX2, COL1A1, and OC
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gene expression. Cell-synthesized bone minerals increased
with time, with no significant differences among hUCMSCs,
hESC-MSCs, hDPSCs, BM-hiPSC-MSCs and hBMSCs, indicat-
ing good bone regeneration potential similar to gold-
standard hBMSCs.137–138 However, FS-hiPSC-MSCs were
inferior in terms of osteogenic differentiation compared to
other cell types (Figure 4).138 In another in vivo study, an
hBMSC-encapsulated microfiber-CPC paste was applied
to repair rat cranial defects,138 and the hBMSC-
encapsulated microfiber-CPC tissue engineering construct
exhibited a robust capacity for bone regeneration. At
12 weeks, an osseous bridge in the rat mandibular defect
was observed in the CPC-microfiber-hBMSCs group with a
new bone area fraction of 42.1%±7.8%, which was
threefold greater than that of the control group
(Figure 5).139 Therefore, these results demonstrate that
injectable hydrogel microfiber-CPC paste is a promising
carrier for cell delivery and greatly enhances bone
regeneration in vivo.

Drug delivery
The non-exothermic setting reaction and the intrinsic
porosity of CPCs allow the incorporation of drugs and
biologically active molecules with low risk of thermal
denaturalization or loss of activity during preparation or
implantation.19 For drug incorporation into CPCs, the drug is
simply mixed with either the liquid or solid components of
the cement.140 Alternatively, it is added by adsorption onto
the pre-set scaffold141 or incorporated into polymeric
microspheres or microfibers before blending with CPC
paste.142 Several factors influence the loading and release
of therapeutic substances. These include the microstructure,
porosity and surface area of the CPCs, the way in which the
drug is incorporated into the CPCs, and the interaction
between the drug and the CPC matrix.19,143 CPCs have
been used as drug carriers for antibiotics144 as well as anti-
cancer,145 anti-inflammatory,146 and anti-resorptive (anti-
osteoporotic) drugs.147 CPCs have also been used as drug
carriers for therapeutically active proteins or growth factors
that foster local bone generation.148 Recently, ionically
modified CPCs (for example, with Sr2+, SiO4

4− , Zn2+, Mg2+)
with the capability of influencing bone modeling and
remodeling processes were investigated.115,149–150 For addi-
tional details, readers are referred to a review on the use of
CPCs for drug delivery.19 Of note, the incorporation of the
second phase of a degradable carrier into CPCs for drug
delivery is beneficial for a more sustained release than
directly loading the drugs into CPCs.148 For this purpose,
gelatin microspheres,151 PLGA microparticles,152 bioactive
glass,148 and chitosan/dextran sulfate microparticles153

have been used in CPCs to deliver drugs with tailored
degradation rates to control the release profiles.

Vascularized CPC scaffolds
Adequate and rapid vascularization is essential for suc-
cessful bone regeneration. Failure of the bone healing
process, including delayed healing or non-unions, is often
attributable to a lack of adequate vascularization.154

Furthermore, vascularization is critical for the viability of
seeded cells in the scaffold. If the distance between cells
and the nearest capillary network is greater than 100–
200·μm, which exceeds the diffusion or perfusion limits of
nutrients and oxygen, the viability of the seeded cells is
compromised.89

Improvement in CPC vascularization is stimulated by
modifications to thematerial itself. Physical features such as
porosity and pore sizes are known to impact
vascularization.155–156 To this end, a study fabricated a
self-setting CPC composite with gelatin fibers to create
interconnected hollow channels in the CPC after dissolu-
tion of the gelatin fibers.157 In vivo subcutaneous implanta-
tion showed that the resulting channels in CPC indeed
facilitated vascular infiltration into the construct.157 In
addition, different channel sizes induced different vascu-
larization behaviors in vivo. Channels with a 250-μm
diameter increased the expression of the representative
angiogenic factors HIF1α, PLGF and migration factor
CXCR4, which induce the formation of small vessels.
Channels with a larger diameter of 500 μm enhanced
VEGF expression, which induces the development of large
vessels. More HIF1α-positive cells were found in the inter-
connected intersections of several channels, indicating
high levels of sprouting and vasculogenesis potential under
hypoxic conditions.157 While the majority of research has
focused on modifying the physical features of CPCs to
improve vascularization, chemical features, such as the
release of ionic calcium and phosphate, have also been
suggested to play a role in regulating vascularization.158 In
a recent study, CPCs were coated with a graphene oxide-
copper nanocomposite with the rationale that the oxygen-
containing functional groups in graphene oxide would
provide more binding sites for serum proteins and thereby
enhance initial cell adhesion and other bioactivities.159

When incubated with rat BMSCs, CPCs with the novel
graphene oxide-copper nanocomposite coating acti-
vated Hif-1α and further enhanced the expression of VEGF
and BMP-2 via the Erk1/2 signaling pathway. Indeed, an
in vivo study found more blood vessel volume and bone
regeneration in the coated-CPC group.159 However, the
mechanism underlying vascularization and the impact on
bone regeneration efficacy via CPCs require additional
experiments, particularly in vivo studies.
From a biological point of view, angiogenic growth

factors, stem cells and vessel-forming cells are highly
promising approaches to promote vascularization. A
recent study investigated the use of autologous BMSCs in
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combination with autologous platelet-rich plasma (PRP)
delivered via a macroporous CPC to regenerate large
bone defects in minipigs.160 The CPC-BMSC-PRP group
generated twofold more new bone and twofold higher
blood vessel density compared to those of the macro-
porous CPC control at 12 weeks.160 In addition, recombi-
nant growth factors and cell signaling molecules are
alternatives to autologous growth factors that provide
more flexible and delicate control over the dose and
factors to be incorporated. Several studies have loaded
dual agents, specifically BMPs and VEGF, in a single CPC
scaffold, which demonstrated excellent angiogenic

activity in vitro and in vivo.161–162 In addition to using
growth factors, CPC pre-vascularization in vitro was
investigated.163 In this method, vessel-forming cells
were co-seeded with bone-forming cells on the engi-
neered tissue construct to form microvascular structures
before implantation in vivo. The co-culture of human
osteoblasts and human umbilical vein endothelial cells
(HUVECs) on gas-foaming macroporous CPCs in vitro
successfully generated microcapillary-like structures and
elevated the expression of angiogenic and osteogenic
markers.163 Furthermore, the beneficial effects of co-
culture were amplified by using an Arg–Gly–Asp (RGD)
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Figure 6. Formation of microcapillary-like structures by HUVECs and hiPSC-MSCs co-cultured on CPC scaffolds at 21 days (a-c). HUVECs were
identified by immunostaining with the endothelial marker PECAM1 in green on the cell membrane, and nuclei were stained with DAPI in blue.
hiPSC-MSCs were identified by nuclei counterstained with DAPI in blue but lacking green staining on the cell membrane. Microcapillary-like
structures increased with culture time. d shows the HUVEC monoculture control group, which exhibited no evidence of vascular-like structures.
Representative SEM images of microcapillary-like structures via the co-culture system (e,f). (f) A higher magnification image of the image in e.
(Adapted from Liu et al.165 with permission.)
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modification for the CPC scaffold.164 Similarly, the co-
culture of hiPSC-MSCs and HUVECs on amacroporous CPC
in vitro also generated microcapillary-like structures
(Figure 6).165 In an animal study, HUVECs were co-
cultured with four types of stem cells, specifically hUCMSCs,
hBMSCs, hiPSC-MSCs and hESC-MSCs, on CPCs and then
implanted in an 8-mmcritical cranial bone defect in rats for
12 weeks.166 Microcapillary-like structures were successfully

formed on CPCs in vitro in all four co-culture groups.
New bone formation and the blood vessel densities of the
co-cultured groups in vivo were much greater than that of
the CPC control without cell seeding or the CPC-BMSCs
group without co-culture (Po0.05).166 These results
demonstrated the promise of co-culture and CPC
pre-vascularization to greatly enhance osteogenesis and
angiogenesis in vivo.
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Figure 7. Representative h&e images at 12 weeks after the implantation of CPC scaffolds generated utilizing different pre-vascularization strategies
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For successful bone regeneration, it is important to
establish vascularization in a timely manner, but the
stabilization of such a vascular network is of similar
importance, although it is often neglected. Angiogenesis
without vessel maturation produces abnormal, defective
blood vessels that are prone to regression.167 Perivascular
cells such as pericytes play important roles in the stabiliza-
tion and maturation of blood vessels by guiding the
developing vessels to respond to angiogenic stimuli.168

Enlightened by this fact, further improvement of the pre-
vascularization strategy with the addition of pericytes was
attempted.169 A tri-culture system comprising hiPSC-MSCs,
HUVECs and pericytes was developed to pre-vascularize
the CPC scaffolds.169 Both the bi-culture and tri-culture
groups exhibited the formation of vessel-like structures
in vitro, greatly elevated levels of angiogenic and osteo-
genic markers, and bone matrix mineralization. After
implantation in a rat model with a cranial bone defect
for 12 weeks, the tri-culture group demonstrated much
higher amounts of new bone than the bi-culture and
monoculture groups and the CPC control (Figure 7).169 The
substantial increase in bone formation in the tri-culture
group was likely related to enhanced vascularization and
the stabilization and maturation of blood vessels.
In vivo pre-vascularization is also achieved using a

surgical method involving the implantation of a scaffold
into a well-vascularized and easily accessible body
tissue such as a subcutaneous pocket or a muscle
pouch. Microvascular structures are formed as a result
of invasion and outgrowth of the surrounding host
microvasculature.170–171 After the completion of pre-vas-
cularization, the tissue construct is harvested and grafted
into the defect site, where the preformed microvessels
inside the construct inosculate and anastomose with the
host blood vessels. The disadvantages of this approach are
obvious: the invasive nature of the surgery, higher cost, and
a relatively longer treatment process. Therefore, new tissue
engineering methods utilizing CPC scaffolds with co-culture
and tri-culture represent exciting alternative strategies that
warrant further research for continued improvement to
achieve wide clinical applications.

CONCLUSIONS
Due to their injectability, bioactivity and biocompatibility,
CPCs are highly promising for bone tissue engineering
applications and are used as scaffolds and carriers to
deliver stem cells, drugs and growth factors. CPCs are
either used as pre-set scaffolds or injectable pastes. 3D
printing is a promising technology for fabricating CPC
scaffolds with a high degree of accuracy and is used to
develop intricately detailed biomimetic structures that are
not achievable via traditional manufacturing methods. 3D

printing has the potential to facilitate the next generation
of smart and functional CPCs. Furthermore, with recent
advances in tissue engineering, a new emphasis on “tissue
regeneration by natural tissues” instead of “tissue replace-
ment by biomaterials” has been proposed. Thus, CPCs with
excellent biological interactions, such as osteoconductiv-
ity, osteoinductivity, biodegradability and bioactivity, are
promising to meet this need. CPC composite constructs
and hybrid systems involving the incorporation of cells,
growth factors, bioactive molecules, bioinorganics, poly-
mers, and bioactive glass are likely to yield favorable bone
regenerative outcomes and greatly widen the clinical
applications of CPCs. In addition, the co-culture and tri-
culture of various tailored cell types with CPC scaffolds
offer exciting potential for vascularization in bone tissue
regeneration, which is especially important for treating
large-sized bone defects. Further studies are needed to
realize these promises and understand the underlying
mechanisms to further the development of tissue engineer-
ing and regenerative medicine.
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