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Purpose: To evaluate the coverage and accuracy of whole-exome
sequencing (WES) across vendors.

Methods: Blood samples from three trios underwent WES at three
vendors. Relative performance of the three WES services was
measured for breadth and depth of coverage. The false-negative
rates (FNRs) were estimated using the segregation pattern within
each trio.

Results:Mean depth of coverage for all genes was 189.0, 124.9, and
38.3 for the three vendor services. Fifty-five of the American
College of Medical Genetics and Genomics 56 genes, but only 56 of
63 pharmacogenes, were 100% covered at 10 × in at least one of the
nine individuals for all vendors; however, there was substantial
interindividual variability. For the two vendors with mean depth
of coverage > 120 × , analytic positive predictive values (aPPVs)

exceeded 99.1% for single-nucleotide variants and homozygous
indels, and sensitivities were 98.9–99.9%; however, heterozygous
indels showed lower accuracy and sensitivity. Among the trios,
FNRs in the offspring were 0.07–0.62% at well-covered variants
concordantly called in both parents.

Conclusion: The current standard of 120 × coverage for clinical
WES may be insufficient for consistent breadth of coverage across
the exome. Ordering clinicians and researchers would benefit from
vendors’ reports that estimate sensitivity and aPPV, including depth
of coverage across the exome.
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INTRODUCTION
Next-generation sequencing, widely used by researchers, is
entering clinical care as a diagnostic test, but methods
and quality vary across vendors. Customers should be fully
informed of a test’s accuracy in detecting coding variants,
both to drive selection of high-quality vendors and to be
aware of the likelihood of false positives and negatives.1,2

The accuracy of variant detection in coding regions is
lower for whole-exome sequencing (WES) than whole-
genome sequencing, even at equivalent coverage.3,4

Nonetheless, WES is widely used due to lower cost and
because most disease-associated genomic variants discovered
thus are in coding regions and splice sites of protein
coding genes.
WES is performed as a series of biochemical and

computational analytic procedures, varying from vendor to
vendor, that influence exome coverage and genotype
accuracy. Factors contributing to variation include (i) quality
of genomic DNA,5,6 (ii) DNA extraction methods,7,8 (iii)
sequence library preparation including exome capture9 and
polymerase chain reaction amplification,10 (iv) the sequencing
platform,11,12 (v) short read length and depth of coverage,12,13

(vi) computational analytical pipeline,14 (vii) sequence con-
texts such as GC contents and simple repetitive DNA

sequences,11,15 and (viii) the type of variant (single-nucleotide
variant (SNV), insertion/deletion (indels), and more complex
variants).16 Reanalysis of raw sequence reads using a
standardized software pipeline can improve comparability
between WES results17 but cannot overcome the differences
in targeted intervals, capture efficiency, and sequencing
chemistry.18

We systematically compared the WES results from three
vendors selected on the basis of varying exome capture
methods with differing read-lengths and mean depths of
coverage. We reprocessed raw reads using a single standard
analytical pipeline to minimize variability due to bioinfor-
matics pipelines among the vendors. For each gene, we
focused on breadth of coverage at a minimum depth of 10
high-quality aligned reads. For each individual, concordant
and discordant calls among the vendors were analyzed for
genotype quality (GQ), depth of coverage (DP), and presence
of reported minor allele frequency (MAF) to prioritize likely
true-positive variants using all variant calls from the three
vendors. Finally, we calculated the analytical positive
predictive value (aPPV) and sensitivity for each vendor using
a likely true-positive set, and estimated a lower bound for
the false-negative rate (FNR) in each offspring among the
three trios.
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MATERIALS AND METHODS
Samples and WES
Blood-derived DNA samples from three trios—hereafter
referred to as trios A, B, and C—were collected and aliquoted
per each vendor’s specification. Exome sequencing and
subsequent use for research was approved by the Boston
Children’s Hospital Committee on Clinical Investigation. We
selected three regional vendors providing the CLIA-certified
clinical sequencing service—denoted as V1, V2, and V3—all
using a four-channel sequencing by synthesis technology
platform (Illumina HiSeq 2500 for V1 and V2, and HiSeq
4000 for V3; Illumina, San Diego, CA, USA). Three different
whole-exome capture methods were used: the Illumina
Nextera Rapid capture (Nextera, V1), Agilent SureSelectXT
(SureSelectXT, V2; Agilent Technologies, Santa Clara, CA,
USA), and NimbleGen SeqCapEZ-MedExome (MedExome,
V3; Roche NimbleGen Inc., Madison, WI, USA). Read-
lengths were 76, 150, and 101 bps for V1, V2, and V3,
respectively.

Comparison of capture targets, variant calling, and
annotation
Comparison of exome capture target regions, calculation of
coverage in target regions, and variant calling pipeline are
described in the Supplementary Methods online. All VCF
files were annotated using ENSEMBL Variant Effect Predictor
release 86.19 Rare and high-impact variants (RHIs) were
defined in two ways: first, as MAF o0.005 in any population
from the 1000 Genomes Project20 or Exome Aggregation
Consortium (ExAC)21 and second, categorized as high-impact
by the Variant Effect Predictor and resulting in frameshift,
transcript ablation, transcript amplification, splice acceptor,
splice donor, start lost, stop lost, and stop gain.
We compiled a list of 6,367 putative disease-associated

genes from the following databases: the Human Gene
Mutation Database (Professional 2016.02), OMIM,22

ClinVar,23 the Genetic Testing Registry,24 the Cancer Gene
Census,25 and Orphanet.26 All online databases were accessed
on 27 October 2016 (Supplementary Table S1 online). The
nuclear genes implicated in clinical drug response and
metabolism were collected from the Pharmacogenomics
Knowledge Base’s Very Important Pharmacogenes,
excluding one mitochondrial gene MT-RNR1 (PGx-VIPs,
N= 63).27 Discordant variants in the American College of
Medical Genetics and Genomics (ACMG) 56 genes28 and
PGx-VIPs were further inspected using the Integrated
Genome Viewer (version 2.3.79, http://software.broadinsti
tute.org/software/igv/).

Analytical positive predictive value and sensitivity
To evaluate the performance of variant calls in detecting the
true genotype for each vendor, we defined a “likely true-
positive” set of variants among all unique variants identified
by V1 and V2. In an individual, we compared variant calls
between V1 and V2 in the genomic regions covered with
≥ 10 × in all three vendors (3COV) and used V3 as a

tiebreaker. First, a concordant variant between V1 and V2 was
considered likely true-positive. Second, a discordant variant
between V1 and V2 was labeled as likely true-positive if
V3 called the same variant. Finally, a discordant variant
between V1 and V2 for which V3 failed to call was considered
likely true-positive if GQ ≥ 20 and MAF> 0 was reported
in ExAC. Then we calculated aPPV (the proportion of likely
true-positive variants out of total variants identified by the
vendor) and sensitivity (the proportion of likely true-positive
variants identified by the vendor out of total likely true-
positive variants). FNR was calculated as 1–sensitivity
per exome.

False positives and false negatives among trios
We analyzed the segregation pattern in autosomes in
offspring for the loci where both parents had DP≥ 10 × in
each trio. We analyzed all variants in overlapping 3COV
regions of both parents where one parent was consistently
called as heterozygous and the other as reference concordant
homozygous in all three vendors. We then used the variant
call in the offspring to estimate FNRs in these loci (see
Supplementary Methods online).
For all summary statistics, mean values across nine

individuals are shown in the Results. Standard deviations
and the other descriptive statistical scores are detailed in
Tables 1 and 2 and the Supplementary Tables online.

RESULTS
Depth and breadth of coverage for target regions
Compared with previous-generation technologies, current
hybridization capture–based methods have superior coverage
and probe design.29 However, none of the three capture
methods was designed to cover 100% of coding exons in the
current version of Consensus Coding Sequence (CCDS).30

Nonetheless, 99.97, 99.85, and 99.67% of CCDS overlapped
the target regions of Nextera (V1), SureSelectXT (V2), and
MedExome (V3), respectively. All three methods targeted
≥ 99.8% of coding exons of putative disease-associated genes
(N = 6,367) (Supplementary Table S2 online).
Mean depth of coverage across all CCDS genes was 189.0

(V1), 124.9 (V2), and 38.3 (V3), although there was a wide
range of variation across genes (Supplementary Figure S1
online). We analyzed coverage in more detail only for V1 and
V2, because V3 did not meet the current standards typically
used for WES. For each CCDS gene, we calculated the percent
of exonic bases covered at ≥ 10 × that provides 95% sensitivity
for heterozygous SNVs (Supplementary Table S3 online).4

The proportion of genes covered 100% at ≥ 10 × was 80.1%
(V1) and 79.1% (V2) on average (Supplementary Table S4
online).
For the ACMG 56 genes and PGx-VIPs, we compared the

list of finished genes—i.e., 100% covered at ≥ 10 ×—in at least
one of nine individuals for each vendor. Except for RYR1,
RYR2, and TGFBR1, 53 genes were finished in at least one of
the nine individuals by V1. Likewise, V2 had incomplete
coverage for PKP2, RB1, and SDHD (Figure 1a). From the
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PGx-VIPs (N = 63), 61 and 60 genes were finished by V1 and
V2 respectively (Figure 1b). The breadth of coverage for both
the ACMG 56 genes and PGx-VIPs was higher than exome-
wide averages at all thresholds (Wilcoxon signed-rank tests

p values o0.01, Table 1). For CCDS genes, V1 had
consistently higher breadth of coverage compared with V2.
However, no differences were found for the ACMG 56 genes
and PGx-VIPs, except for PGx-VIPs at ≥ 10 × (Wilcoxon
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signed-rank test p value o0.01). Of note, MYBPC3 and
TNNI3 were not completely targeted by SureSelectXT, but
showed 100% coverage in one or more individuals. SDHD was
not well covered by V2 (80.3% on average at ≥ 10 × ).
We observed a wide range in the breadth of coverage across

the nine individuals. As such, only 47 (V1) and 41 (V2) of the
ACMG 56 genes were finished in all nine individuals
(Figure 1a). Twelve of the PGx-VIPs with the Clinical
Pharmacogenetics Implementation Consortium (CPIC)
guidelines (CPIC genes)31 were finished by both V1 and V2
in at least one of the nine individuals (Figure 1b). Percentage
of coverage of the PGx-VIPs also varied across individuals; 9
(V1) and 8 (V2) of the 12 CPIC genes were finished in all nine
individuals. For the ACMG 56 genes, V1 had significantly
better breadths of coverage for PKP2, RB1, and SDHD, and
V2 had advantages for DSG2, RYR1, RYR2, SCN5A, and
TGFBR1 (Mann–Whitney–Wilcoxon tests, Bonferroni cor-
rected p values o0.05). Seven of 63 PGx-VIPs showed
significantly different breadth of coverage between V1 and V2
(Figure 1b).
We examined finished genes at ≥ 20 × coverage that could

provide 99% sensitivity for heterozygous SNVs.4 At this
threshold, 40 (V1) and 26 (V2) of the ACMG 56, and 9 (V1)
and 5 (V2) of the 12 CPIC genes were finished in all nine

suggesting incomplete breadth of coverage even with higher
mean depth of coverage of V1 and V2 (Supplementary
Figure S2 online). At ≥ 20 × , variability in breadth of
coverage across nine individuals was significantly higher
than at ≥ 10 × (Supplementary Figure S3 online). Breadth
of coverage for four genes (ATP7B, BMPR1A, OTC, and
SMAD4) recently added to the ACMG gene list for reporting
secondary findings32 is shown in Supplementary Figure S4
online.

Concordant and discordant variant calls among the vendors
in clinically implicated genes
For each variant type, we checked agreement of variant calls
among the three vendors, restricting the analysis to genomic
regions with ≥ 10 × in all three vendors to minimize the
effects of the lower coverage in V3 (Table 2). We also
compared concordance rates between V1 and V2, to further
minimize the effect of low coverage in V3. As expected,
restricting the analysis to genomic regions with ≥ 10 ×
coverage increased concordance rates for all types of
variants (Table 2 and Supplementary Table S5 online). Of
note, heterozygous indels showed the lowest concordance
rates at any threshold compared with the other types of
variants.

Figure 1 Variability in breadth of coverage for the American College of Medical Genetics and Genomics (ACMG) 56 genes and 63
pharmacogenes among the nine individuals. The percentages of coding sequence bases covered with per-site read depth ≥ 10× are shown for
each of (a) ACMG 56 genes and (b) 63 genes from the Pharmacogenomics Knowledge Base Very Important Pharmacogenes (PGx-VIPs). Of 63
pharmacogenes, the 12 clinically actionable genes per the Clinical Pharmacogenetics Implementation Consortium guidelines are highlighted with blue
background in their symbols. Each row represents a gene, and columns are grouped by the nine individuals across the three vendors. Green squares
represent finished genes (i.e., 100% covered at ≥ 10× ), and yellow (95–99%) and red (o95%) squares represent lower breadths of coverage at
≥ 10× . Genes with significantly different breadths of coverage between V1 and V2 are marked with * and † (Wilcoxon signed-rank tests, Bonferroni
corrected p values o0.05). * indicates better breadth of coverage in V1 and † shows better ones in V2.

Table 1 Comparison of covered regions between two vendors
Regions of interest Per-site effective coverage V1 (189.0 ± 28.4) V2 (124.9 ± 9.87)

Mean SD Mean SD

CCDS coding sequences (total 32,279,934 bases) ≥10× 97.9 0.18 97.3 0.29

≥ 20 96.9 0.40 95.6 0.62

≥ 30 95.6 0.76 93.0 1.05

Putative disease-associated genes (total 14,258,789 bases) ≥ 10 98.9 0.13 98.7 0.19

≥ 20 98.2 0.29 97.5 0.44

≥ 30 98.7 0.58 95.7 1.08

ACMG 56 genes (total 196,428 bases) ≥ 10 99.8 0.04 99.8 0.13

≥ 20 99.6 0.09 99.5 0.21

≥ 30 99.2 0.28 99.0 0.32

PGx-VIPs (total 142,223 bases) ≥ 10 98.4 0.10 98.1 0.13

≥ 20 97.7 0.23 97.6 0.23

≥ 30 97.0 0.44 96.8 0.38

For each vendor, mean and standard deviation (SD) for percentage of coding sequence bases covered at different thresholds are calculated from the set of nine indivi-
duals. Mean depth of coverage is shown next to vendor identifier in top row. Consensus Coding Sequence (CCDS) genes (N = 18,616), putative disease-associated
genes (N = 6,367) from disease gene databases, the American College of Medical Genetics and Genomics (ACMG) 56 genes, and the Pharmacogenomics Knowledge
Base Very Important Pharmacogenes (PGx-VIPs, N = 63) are listed in Supplementary Table S1 online. Sum of coding sequence bases for each region of interest is
shown as total bases.
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Concordance rates for the variants in clinically implicated
genes such as putative disease-associated genes, the ACMG
56, and PGx-VIPs were consistently higher compared with
those of exome-wide averages. When calculating the con-
cordance rate, we excluded all variants in the major
histocompatibility complex region (HMC, chr6:28,477,798–
33,448,354). In 6,367 putative disease-associated genes,
concordance rates between V1 and V2 with ≥ 10 × were
consistently higher: 96.8 (heterozygous SNVs), 99.5 (homo-
zygous SNVs), 63.3 (heterozygous indels), and 85.2% (homo-
zygous indels). Compared with the concordance rates
calculated with VCF files generated using a single software
pipeline in our study, concordance rates with vendor-
provided VCF files were consistently lower (Supplementary
Table S5 online).
For the ACMG 56 genes, 98.3% of heterozygous and 100%

of homozygous SNVs were concordant between V1 and V2.
Discordant variants in the ACMG 56 were found in APOB,
KCNH2, PKP2, PMS2, SCN5A, and TSC2 (Supplementary
Table S6 online). No homozygous indel was found in the
ACMG 56 genes across the nine individuals, and only three of
eight heterozygous indels were concordant between V1 and
V2. For the PGx-VIPs, all eight homozygous indels and 8 of
21 heterozygous indels were concordant between V1 and V2.
Concordance rates were 94.6 and 99.6% for heterozygous and
homozygous SNVs, respectively. Overall, concordance rate
among the ACMG 56 and PGx-VIPs was higher than the
exome-wide average except for indels.
Rare genetic variants with deleterious impacts on protein

function are often prioritized in WES for further evaluation
and validation if such variants are found in putative disease-
associated genes. To minimize false negatives for this class of
variants, we used all RHI variants discovered by V1 and V2
without restricting to ≥ 10 × covered regions, and selected
RHI variants in putative disease-associated genes. Concor-
dance rate for heterozygous RHI SNVs was 90.4%, and all five
homozygous RHI SNVs found were concordant. All RHI
SNVs were concordant for genomic regions covered with
≥ 10 × in both V1 and V2. There were no homozygous RHI
indels, but only 11 of 46 heterozygous RHI indels from the
nine individuals were concordant. We visually inspected read
alignments in the regions surrounding discordant RHI
variants in Integrated Genome Viewer. The discordant calls
were associated with (i) low depth of coverage, (ii) allelic
imbalance, (iii) strand bias, (iv) read alignments suggesting
structural variation and indels, and (v) homopolymers
(Supplementary Table S6 online). Next, we examined
potential false positives among concordant variant calls
between V1 and V2. We restricted variant calls to
heterozygous RHI variants discovered in putative disease
genes (excluding MHC), which resulted in 30 SNVs and three
indels in three probands. None of these were likely false
positives according to segregation pattern—i.e., they were all
inherited from only one of the two parents. Therefore, the
proportion of likely false positives among concordant calls
between V1 and V2 would be very low.Ta
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We found two discordant variants that were reported as
pathogenic in ClinVar. Pathogenic heterozygous SNVs—one
in FCGR1A and the other in VPS13B—were called by V1, but
V2 failed to call the variants because of low coverage for both
loci (Supplementary Table S6 online).

Analytical positive predictive value and sensitivity of
variant calls
Discordant calls are due to either false-positive calls in one or
more vendors, or a failure to detect a variant in one or more
vendors. To further characterize discordant variant calls, we
examined GQ, DP, and reported MAFs > 0 in ExAC for these.
Among the discordant SNVs between V1 and V2 (5.8% of
total SNVs), 3.8% had low GQ (o20) in one of two vendors.
For the discordant SNVs with good GQ (≥20), 0.1% had low
DP (o10) in one of two vendors. Overall, 2.0% of SNVs that
were discordant between V1 and V2 had good genotype
quality with ≥ 10 × depth of coverage, of which 1.2% had
reported MAFs > 0 in the ExAC server (Figure 2a and
Supplementary Table S7 online).
We considered a minimal set of likely true-positive calls to

be with a MAF reported in ExAC, GQ ≥ 20, and DP ≥ 10. GQ
and DP are often used to filter out variants with erroneous
variant calls;33 however, applying these filtering criteria could
result in false negatives in WES. The proportion of retained
variants among completely concordant variant calls across all

three vendors-hereafter referred to as 3CON-varied by variant
type and among the vendors (Supplementary Figure S5
online). In V1, 99.6% of heterozygous SNVs passed both DP
≥ 10 and GQ ≥ 20 thresholds. Using the same criteria, 99.3%
of heterozygous SNVs retained for V2 (Supplementary Table
S8 online).
To calculate the sensitivity and aPPV of each vendor’s

result, we selected likely true-positive calls from aggregated
variant calls from V1 and V2. The blue rectangle in Figure 2b
represents the likely true-positive set from V1 and V2, and all
variant calls from a given vendor are represented by the red
rectangle. For both vendors, aPPVs and sensitivities were 99%
or higher except for heterozygous indels. V1 showed higher
sensitivities for heterozygous indels but lower aPPVs
compared with V2 (Figure 2c). Of note, V2 had lower
sensitivity for heterozygous indels compared with the other
types of variant. V1 showed the lowest aPPV for heterozygous
indels compared with the other types of variant and also
compared with V2. Thus, accurate detection of heterozygous
indels would be challenging for both V1 and V2. Our
estimation of sensitivity represents an upper bound because
true-positive variants might not have been captured and/or
called by any of two vendors, and variant calls that did not
pass DP and GQ thresholds could also include true-positive
variants.
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Figure 2 Analytical positive predictive value and sensitivity of variant calls from each vendor. (a) Biallelic single-nucleotide variants (SNVs)
concordant and discordant between V1 and V2 were sequentially checked for genotype quality (GQ) score, per-site depth of coverage (DP), and
reported minor allele frequency (MAF) in the Exome Aggregation Consortium (ExAC) server. The number of concordant and discordant SNVs is shown,
as is the average number and standard deviation of variants meeting each criterion across nine individuals. In parentheses, the same statistics are
expressed as a percentage of the total number of variants seen in either vendor. (b) The scheme for calculating analytical positive predictive value
(aPPV) and sensitivity. In each individual, a likely true-positive set of variants is compiled by aggregating all unique variants seen in both V1 and V2
(blue rectangle) that had GQ ≥ 20, DP ≥ 10, and (for vendor-specific variants only) MAF > 0 in ExAC. All variants discovered by a vendor are used to
calculate aPPV (the green shaded squares divided by the red rectangle) and sensitivity (the proportion of the green shaded squares divided by the blue
rectangle). (c) The mean and standard deviation across nine individuals for aPPV and sensitivity for each variant type and vendor. FN, false negative; FP,
false positive; TP, true positive; WES, whole-exome sequencing.
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False positives and false negatives among trios
We took advantage of the family-based trio design to calculate
FNRs in regions of high coverage (Figure 3), using the variant
calls from all three vendors, but restricting the analysis to
genomic regions covered with ≥ 10 × by all three vendors. In
trio A, a total of 58,458 variants were found by the three
vendors, of which 80.9% (47,281/58,458) were in 3COV
regions for both parents (Supplementary Table S9 online).
From these, we focused on the 22,397 loci for which both
parents had 3CON and where one parent was heterozygous
and the other was homozygous for the reference allele. For
these variants, the offspring should be heterozygous about
50% of the time. In the offspring of trio A, 11,042 (49.3% of
22,397) were called as heterozygous in at least one vendor, of
which 10,907 were 3CON. For these loci, concordance rates in
the offspring of trio A were higher for both SNVs and indels

—98.9 and 95.7%, respectively—compared with genome-wide
concordance rates; these loci also showed higher concordance
rates in the six unrelated individuals from trios B and C (98.7
and 92.4% for heterozygous SNVs and indels, respectively).
We identified variants as likely false negatives if there was a
no-call or a homozygous reference call in the offspring for trio
A for one vendor and a heterozygous call in the other two
vendors. There were 8 (V1), 68 (V2), and 23 (V3) likely false
negatives, of which 0% (V1:0/8), 14.7% (V2:10/68), and 0%
(V3:0/23) were due to low coverages (o10 × ). Of eight likely
false negatives from V1, seven were called as homozygous for
the reference allele and one was a no-call. Of 68 loci that V2
did not call heterozygous, 6 were no-calls and 62 were called
as homozygous for the reference allele. For V3, all 23 were
called as homozygous for the reference allele. We did not
consider the variants that were called but had discordant
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Figure 3 Vendor-specific false-negative rates in trio. (a) For each trio, we calculate number of vendor-specific false negatives in offspring by
focusing on the completely concordant variant calls across all three vendors (3CON) autosomal loci where one parent is heterozygous (i.e., 0/1–0/1–0/1
for V1, V2, and V3, respectively) and the other is reference concordant homozygous. We restrict the analysis to genomic regions covered with ≥ 10×
by all three vendors. (b) A Venn diagram shows each subgroup of concordant and discordant variant calls for proband. The black solid line represents
the total number of variants discovered by two or more vendors, which we use as a denominator to calculate vendor-specific false-negative rates (FNRs)
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numbers of variant alleles among the vendors—e.g., hetero-
zygous in two vendors and homozygous for the variant allele
in the other—because these are more likely “genotype errors”
rather than false negatives.
We then used these false negative loci to estimate a lower

bound for FNRs for each trio. For the denominator of likely
true-positive variants, we used variants that were called as
heterozygous in the offspring in at least two vendors; in trio A
there were 11,006 such variants. The lower bound of vendor-
specific FNRs in these well-covered regions were 0.07% for V1
(8/11,006), 0.62% for V2 (68/11,006), and 0.22% for V3
(23/11,006). FNRs estimated using the same analysis strategy
were 0.16% (V1), 0.56% (V2), and 0.38% (V3) for trio B, and
0.13% (V1), 0.20% (V2), and 0.48% (V3) for trio C
(Figure 3c) (we included analysis of V3, even with a lower
sequencing depth, because we focused on genomic loci
covered at a minimum of 10 × in all three vendors). Our
estimation of FNRs is comparable with the one reported by Li
et al.34 in family samples. Variants in low-coverage regions
(o10 × )—comprising, for instance, 10.0% of CCDS in trio A
—were not used to calculate FNRs; however, the FNR in
offspring was likely very low for high-coverage regions in both
parents, supporting the strength of trio sequencing for some
clinical conditions,35 at least in regions of consistently high
coverage.

DISCUSSION
We performed comparative analysis of WES results from
three vendors to measure the empirical coverage of medically
implicated genes and concordance rate of variant calls among
the vendors, using uniform variant calling methods to remove
variability from software analytical pipelines. The mean
percentage of CCDS coding regions covered with ≥ 10 ×
was above 95% for the nine individuals and all vendors. For
the ACMG 56 and PGx-VIPs, we found a wide range of
difference in breadth of coverage with ≥ 10 × across the nine
individuals. The mean depth of coverage provided by V2 was
typical for clinical WES;36 however, KCNQ1, PKP2, RB1, and
TGFBR1 had variable coverage across the nine individuals
with o95% coverage in some individuals. The depth of
coverage provided by V3 would be suboptimal for clinical use.
RHI variants in putative disease-associated genes were less

concordant than exome-wide averages except for homozygous
SNVs, suggesting that these variants were enriched for
substantial numbers of false positives, false negatives, or
variant calling errors. Among these, low coverage in a vendor
usually was the source of discordant calls, and the variant was
likely a true positive in the other vendor(s). Moreover,
structural variation, homopolymer, or simple repeats were
frequently found in the flanking regions of discordant RHI
variants. Therefore, further evaluation and validation includ-
ing visual inspection of aligned reads and validation using an
orthogonal method will be particularly important for RHI
variants. Of note, some rare variants have low coverage in
population-scale databases such as ExAC. For instance, only 2
of 14 discordant RHI variants had good coverage in ExAC.

Conversely, estimating accuracy mostly with common
variants can bias the results for well-covered genomic regions
in population databases where it would be easier to call
variants using next-generation sequencing. Analyzing aPPV
and sensitivity of rare variants with or without good coverage
in population-scale databases for research and clinical
applications would be an interesting research topic but is
beyond the scope of our current study.
For the sites where both parents were highly covered by the

three vendors, vendor-specific FNRs in offspring were low for
all vendors and three trios (0.07–0.62%). This estimation of
FNR cannot be extrapolated to the rest of the genome,
because false negatives are more prevalent outside of the
genomic regions covered with ≥ 10 × in 3COV regions (which
comprise 10.0, 5.5, and 7.3% of CCDS in trios A, B, and C,
respectively). Similarly, variants that are harder to call may
have higher FNRs, as illustrated by loci in 3COV regions with
discordant calls in parents (i.e., 19.1, 12.1, and 15.1% of all
variants found in trio A, B, and C, respectively). Even so, our
results support the strength of trio WES sequencing for
molecular genetic diagnosis for most SNVs in regions of high
coverage.35

Our study has some limitations. First of all, although the
vendors covered a range of read-lengths—76 (V1), 150 (V2),
and 101 bps (V3)—and mean coverage from 38.3 (V3) to
189.0 (V1), we only sampled a small number of vendors, so
our results may not generalize to other vendors or sequencing
platforms. To minimize additional sources of variability, we
used the same DNA stocks and analytical pipeline, but it is
possible that different pipelines or different quality DNA
samples could have yielded different results.37 Notably, we did
not validate discordant genetic variants among the vendors
(therefore the performance measures were relative between
vendors), nor did we use reference genetic material for which
several gold standard variant call sets are available, making it
difficult to definitively classify discordant genotypes into false
positives, false negatives, or genotype errors. However, our
study used trio samples and multiple vendors to overcome
some of these limitations. Furthermore, the utility of a gold
standard set of variants from NA12878 may itself be
somewhat limited because it is widely used to ensure quality
(and hence may be used to optimize platforms for calling this
particular set of variants) but does not cover all known
disease-associated genes. Estimation of sensitivity and aPPV
from an individual genome may also be difficult to generalize
to a range of samples;38 we observed substantial interindivi-
dual variation of the breadth of coverage for clinically
implicated genes across the nine individuals in the
current study.
Mean depth of coverage was a general indicator of overall

sensitivity, but did not capture variability in coverage across
potentially clinically important genes.37 For example, V2
provided a standard mean depth of coverage (125 × ) for
clinical research WES, but showed large variability across
individuals in the breadth of coverage for the ACMG 56 and
CPIC genes, and had consistently higher FNRs in three trios
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compared with V1. It appears that a depth of coverage for
clinical WES may need to be more even, or to be closer to
what V1 provided (190 × ) to achieve consistent coverage
across actionable genes across many individuals. Higher
depths of coverage (e.g., ≥ 20 × and 30 × ) were required to
improve concordance rates between V1 and V2 for indels.
Nonetheless, exonic regions with high sequence homology are
challenging to analyze using WES.30

Establishing the clinical utility of WES therefore requires
ongoing measurement of the breadth and depth of coverage
and accuracy—both across vendors and within individual
vendors over time.39,40 We observed substantial interindivi-
dual variation in coverage of medically implicated genes.
Because aPPV and sensitivity are imperfectly captured by
mean coverage, we suggest that clinical WES service providers
should inform users as to the range of sensitivity and aPPV
for different classes of variants across the sets of genes that are
relevant to the particular clinical scenario, estimated across a
large cohort of clinical samples. This sort of information will
help clinicians both select services and also interpret clinical
reports and distinguish truly negative findings from false
negatives due to low coverage.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the
paper at http://www.nature.com/gim
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