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1. INTRODUGTION

THE techniques of biometrical genetics provide many potentially useful
approaches to the study of the genetical architecture of metrical traits.
However, the more detailed and specialised information one requires the
more restricted is the range of material that may be investigated. For
example the work of Jinks and Perkins (1969) and Perkins and Jinks (1970)
on Nicotiana rustica has provided information not only on the additive and
dominance properties of genes, but also allowed epistasis, linkage and geno-
type-environment interaction to be investigated in crosses between a few
inbred lines.

The population geneticist and breeder alike, on the other hand, wish
to obtain information about their populations, but such material poses
many difficulties. Nevertheless, by means of various multiple mating
schemes, it is, at least theoretically, possible to partition the variation within
and between full and half-sib families into additive genetic, non-additive
genetic and environmental components.

The present paper is concerned with the practical utility of such designs
simply for the purpose of detecting dominance variation, assuming that the
additive variance is easily estimated.

This problem was originally considered by Comstock and Robinson
(1952) in connection with overdominance. Single locus overdominance is
no longer widely held to be an important feature of non-additive variance,
and in fact it appears that for characters for which epistasis is not a significant
feature of the genetic architecture, dominance ratios appear to be consider-
ably less than unity (Kearsey and Kojima, 1967; Mather, 1960). Since
non-additive components can be unambiguously ascribed to dominance
only in the absence of epistasis, restricting our attention to such characters
is not too unrealistic.

There are three questions we might ask about the dominance properties
of a character. Firstly, is dominance present? Secondly, what is the
average magnitude of the dominance ratio? And thirdly, if dominance
is a feature of the genetic control, is there a directional element to it?
In this paper attention will be restricted to the first and last points above,
the possibility of answering the second being very dependent on the other
two.

Pursuing the first point, then, we will consider just how large an experi-
ment it is necessary to raise to detect dominance by means of an F test of
appropriate mean squares, and see to what extent we might reduce the
total experimental size by inbreeding prior to the experiment. Obviously
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the necessary experimental size will depend on the magnitude of dominance,
and a range of dominance ratios up to 1-0 are considered.

In the limiting case of the additive effects (d;) the absolute values of the
dominance effects (] #; |) and allele frequencies (u;) being constants (d, &, u)
at all the loci (i = [—k) controlling the character the population can be
completely defined in terms of three parameters. These are the dominance

ratio b(: h
d

V
); the narrow heritability, h,2,<=V—A where V4, Vp are the
P

additive genetic and total phenotypic variances rcspectivcly) and the fre-

quency of the increasing allele (u).

The narrow heritability of the original population can be determined with
some accuracy and thus is a useful standard. It is then possible, as will be
shown, to determine the minimum experimental size needed to detect
dominance for a given value of # and to show how this size varies with allele
frequency.

2. EXPERIMENTAL DESIGNS

There are basically four crossing schemes which allow direct tests for
non-additive variation for a metrical trait in a randomly mating population.
In the absence of epistasis, non-nuclear effects and genotype-environment
interaction this variation is due to dominance irrespective of the magnitude
of linkage disequilibrium. It will be assumed for the purposes of illustration
that the progeny are all individually randomised in a single block, with r
individuals in every family. Obviously such a design restricts the type of
organisms for which it is suitable, but the randomised plot design will be
considered in the discussion.

The four crossing schemes, together with a summary of their appropriate
analysis of variance, are as follows.

(i) The Experiment II of Comstock and Robinson (1952) in which
n, males and n, females are chosen at random from the population and
crossed in all combinations. This design will be referred to as N.C. Exp. II.
Provided n, = n, = n the analysis takes the following form:

Source d.f. M.S. e.m.s.
Between male parents n—1 MS, —
Between female parents n—1 MS, —
Males x Females (n—1)2 MS, o¥+raf
Within families n*(r—1) MS, o}

Here, as in the other designs described below, only the expected mean
squares (e.m.s.) of those items relevant to the detection of dominance are
indicated. The genetical and environmental components of o3, o} are
shown for all designs in table 1 in terms of the degree of inbreeding, f
(Jinks and Broadhurst, 1965).

(ii) The Experiment III of Comstock and Robinson (1952)—N.C. Exp.
III. As originally described, this involved sampling # males from a randomly
mated derivative of a cross between two inbred lines (i.e. an F, or later
generation). Each male was then crossed to females of both inbred lines.
When the population is of unknown ancestry the inbred lines can be replaced
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by extreme selection lines from the population (Kearsey and Jinks, 1968).
The analysis of such data is as shown below.

Source d.f. M.S. e.m.s.
Sums (male groups) n—1 MS, e
Differences (males x fenales) n—1 MS, 03+2ro}
Within families 2n(r—1) MS, o2

(i1i) The diallel cross (Hayman, 1954) in which » individuals are sampled
and crossed both as male and female parents.

TasLE 1

Genetic and envir tal components of expected mean squares for the four experimental designs, (For
explanation, see text)

Genetic components

'}Dl %Hl Tla'Hn %Fl E

Design e.m.s. Supd? Zuyh? Zut2ht Zuy(u—v)dh e?
N.C. Exp. II o3 —_ — (1+£)2 — _
and Diallel ol (1—f) (1=f) —(1=/)2 -(1-1) 1
N.C.Exp.IIl o2 —_ — (1+£)/2 — —
: o} (1-£/12 (1=H/2 — - 1
AB.LP.’s o2 — (1+7)/16  [1—f(10—~f)]/8 — —
o} (I1-f)  3(1-=f)4 —(1=f)%2 —(1=f) 1

In a complete diallel all n* matings are constructed, but selfs and/or
one set of reciprocal crosses may be omitted (Griffing, 1956; Jones, 1965).
Although the parents selfed do not contribute to the mean square for
dominance variance (b3 in Hayman’s notation) we shall, however, consider
the complete diallel cross. The relevant items in the analysis of variance
are:

Source d.f. M.S. e.m.s.
-3
by "("2 ) MS, o2 +2ro?
Within families n(r—1) MS, o’

The by MS in Hayman’s notation is identical to Griffings specific combining
ability (Griffing, 1956).

(iv) This is an extension of the biparental mating scheme (B.I.P.’s)
described by Mather (1949) to include families derived from selfing the
parents and will be referred to as Augmented B.I.P.’s (A.B.I.P.’).

Since the analysis and interpretation of this has not been described
previously a brief account will be presented here. A sample of 2z individuals
are taken and paired off at random. Call the parents of the jth pair Py,
Pj,, wherej = 1,2, ...n. Four full-sib families can be produced from every
such pair by selfing each parent (Fj;.;, Fj,.) and by reciprocally crossing
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(Fj1.9s Fyo.1). The following comparisons can then usefully be made between
the four families.

Fyy.y Fj.q Fyy.y Fy,., Comparison
1 0 0 -1 Cn

-1 1 1 ~1 Cjp
0 1 -1 0 Cis

Cjs is a measure of reciprocal differences and in the absence of such

n 2
effects should be zero for all sets. Thus ) 9;3 will be a sum of squares
i=1
(S.S.) with n d.f. testing for reciprocal differences. Similarly the S.S. for
Cj, (again with n d.f.) measures the variation of selfed families (see Dickinson
and Jinks, 1956).

Interest in this design centres around Cj,. Consider a set of parents
derived, from a population in linkage equilibrium, by inbreeding, without
selection, to some arbitary degree f. Then the frequencies of the three
genotypes at some locus with alleles 4, a are:

AA Aa aa
uituf  2u(l—f) v tuyf
o B 4

Taking pairs of individuals at random results in the matings shown in table 2.
Also shown in this table are the genetic values of the selfed and crossed family

) TaBLE 2
Parental genotypes and the genetic values of the progeny for the A.B.LP.'s design. (For explanation,
see text.)
Parental Genetic values of
genotypes progeny family means
e — A — Cpl4
Frequency Py Py Fpy Fpy FnaFaa (FpatFpa—Fpa—Fua)l4
ol AAx A4 d d d 0
208 AAX Aa d th $(d+h) ik
200y AA Xaa d ~d h th
B Aax Aa o th h 0
28y Aaxaa h —d $(—d+h) $h
e aaXaa —-d -d —d 0

mean  $(1+f)uvh

means and of the comparison Cj,/4. Since Cj, is always a function of / alone,

n 2

) .%3 is a S.S. with 2 d.f. measuring dominance. However, it is convenient
j=17%

to partition this S.S. into that S.S. for deviations of the Cj, around their own
mean and the correction factor. The former can be readily expressed in
conventional dominance components (table 1) while the correction factor
is a measure of directional dominance analagous to the 4, item in Hayman’s
(1954) analysis of diallel tables. The analysis of variance takes the form:

Source d.f. M.S. e.m.s.
Directional dominance 1 — —_
Dominance variation (C,) n—1 MS, or4-4r0%

Within families 4n(r—1) MS, o2
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The variance components are defined in the terminology of Dickinson and

Jinks (1956).

3. METHOD OF ESTIMATING EXPERIMENTAL SIZES
(a) Biometrical
It can be seen from table 1 that the genetic components of variance from
all designs can be expressed using four components (D,, H,, H,, F;). Pro-
vided that at the % loci controlling the character g, dy and k; are constants
(4, d, k) and that the dominance ratio (b) = h/d, then

D, = 4kuvd?

H, = 4kuvd?b?®

H, = 16ku®*d%b?
F, = Bkuv(u—v)d®b.

Further, since we are interested onlyin the relative values of the mean squares
and not their absolute values, we can put the total phenotypic variance equal
to unity. Thus the narrow heritability equals the additive genetic variance
VA( = 1Dg).

ie. h: = }Dp = 2kuvd® [14-b(v—u)]2

From which it follows that
kuvd? = h,z,/2 [14+6(v—u)]2

The right-hand side of this equation contains all the variables we are going
to consider, and thus we can calculate D,, H,, H,, and F;. The environ-
mental variance is calculated as:

E = 1-i2—}H,

The parameters computed as above are then combined to give values for
the e.m.s. according to the relationships set out in table 1. Finally the
expected values of MS,, MS, are calculated for each design for a given family
size, 1.

The only unknown in this sytem is n. The problem is first to find that
value of 2, for a given family size and genetic situation, which will result in
MS, being significant at some level () on a certain proportion of occasions
(a5). And secondly, to find that combination of n and r which minimises
the total experimental size.

Although the approach to the problem is described below for general
values of o, o, we have used the values 0-05 and 0-95 respectively. That is,
we want to find the values of n for which MS, is significant at the 0-05 level
on 95 per cent. of occasions.

(b) Statistical
Let the degrees of freedom of MS,, MS, be df;, df, respectively and further
let
MS MS o
EI\—IIFT = k; TVI—S—f (observed) = £°.
We require that £° be significant at some level (o) on a certain proportion
of occasions (o).
2M
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The tables of F give Fu, (1), the value of F corresponding to some prob-
ability oy, calculated on the assumption that k¥ = 1. If] in fact, k is greater

than unity, the value of F corresponding to o; will be obtained by multiplying
the tabulated value by k. Call this value Fy, (k).

The null hypothesis of no dominance is rejected if
F > Fo,(1).

We wish this to happen on «, of occasions. If we write F(k) for the prob-

ability density of F, given a value of k greater than unity, we want F such
that

J‘GF(k)dF(k) = o

F
We may call this F value Fg, (k). Thus we require
Fo (1) = Fu, (k).
But as explained above
Fo, (k) = kFq,(1)
and hence we require

Fo, (1) = kFa,(1)

Fa (1)
ork=_-1_", 1
ol (1)
For large df;, F can be replaced by y2 such that
2
Xa1
k=22, 2)
Xz2

In the present paper «,, o, are set at 0-05, 0-95 respectively, i.c. we
require £° to be significant at P = 0-05 on 95 per cent. of occasions.

The problem is thus to find the degrees of freedom (df;, df;) that satisfy
equations (1) and (2). In all the designs (see section 2),

o +rta? rtad
k=21 5 2 = l+—a?2.

(3)
i1 1
(Where ¢ = 1 for N.C. Exp. II; = 2 for diallel and N.C. Exp. III; =4
for A.B.L.LP.’s; and df;, df, are functions of z and r).
To calculate n for a given value of r the approximate method suggested

by Comstock and Robinson (1952) was used. That is for large df;, df, we
can use the relationship

1 1
i 3) 4
77 (4)
Now k= Fo'os(l) - 93-’05

FO'%(I) %?;5'
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For large df,, df,

Zg-05~= ~ 2005 (5)
and hence
loge k = 424,45
i.e. Zg05 = loge k[4. (6)
Putting
%‘05 = Gpy (Normal deviate) = 1-644854. (7)
[
We obtain from (6) and (7) that
loge k
g ( ___°2° " ) 8
% (4>< 1-644854> ®)

Now df;, df, are functions of n and r only. Thus for a given 7, n can in all
cases be calculated to a close approximation.
For example, consider a N.C. Exp. II. We have (see section 2 (i))

dfy = n(r—1)
dfy = (n—1)?
For large n we may approximate (n—1)% by n? so that
1 1 r
af_n’(r—-l) taT n?(r—1) ®)
- r
~ [ 10
giving " 20%(r—1) (10)

where o? is given by equation (8).

This approximate solution which need not of course be an integer, will
be slightly too small. Hence the integer immediately above this approximate
n was substituted in

1 1
n¥(r—1) + (n—1)2
and this value compared with o2 as given by (8). If expression (11) was
greater than o2, n was incremented by units of 1 until such time as the ex-
pression was less than o2. This final value of n was the value actually used.
Obviously 7 is inversely related to r and thus with large values of 7, df;
may be sufficiently small for the validity of the approximation in equation
(5) above to be in doubt. In such cases n was adjusted to satisfy the criteria
of equations (1) or (2).
All the calculations were carried out by computer which enabled n to
be calculated for a range of family sizes (r = 5 to 1000), and the minimal
experimental sizes (e.g. n®r for N.C. Exp. II) obtained numerically.

(11)

4, RESULTS

The minimum experimental sizes necessary with small family sizes
(r = 5 and 10) are shown for the N.C. Exp. II in table 3. In view of the
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generally large number of individuals necessitated by such small families,
r was then incremented as described in section 3 to determine that combina-
tion of » and r that minimised the total experimental size.

TABLE 3

Minimum total experimental sizes for N.C. Exp. II design for small family sizes (r = 5, 10), f = 0

Narrow Family
heritability size 0-2 04 0-6 0-8 1-0
0-25 5 2,671,805 171,125 35,280 11,520 5,120
10 1,204,090 79,210 16,810 6,250 2,890
0-50 5 496,125 32,805 6,845 2,420 1,125
10 225,000 16,000 4,000 1,440 810
0-75 5 154,880 10,580 2,420 980 —
10 72,250 5,760 1,440 640 —

Preliminary runs indicated that, for a given mating system, the value of
n yielding the minimum total experimental size varied little with any of the
different combinations of dominance; heritability, gene frequency or degree
of inbreeding considered. What variation existed, did not appear to follow
any simple pattern and was due to some extent to the approximations
employed and also to the minimum size being in some cases associated with
values of 7 in excess of 1000. It should be noted that since # and r are both
integers the relation between them is not a smooth curve but proceeds in
steps, hence the need for an iterative numerical procedure to obtain the
minimum size.

The modal values of z obtained for each design were as follows

N.C. Exp. IT 5
Diallel 8
N.C. Exp. III 12
AB.ILP.’s 12

For these values of n, r was generally large and hence the y? method
(section 3 (b) equation (2)) was employed.

Since k£ = 14 -’%‘2’23 (equation (3) section 3 (b))
1

X305 rtoy

Aoos _ g T2

Xo.05 o}
d l:xg 06 1 O’%

an r=|5—=-11—. (12)

X505 ] to?

Using the values of n above to determine df, for each design, r was
estimated using the tables of y2 The minimum experimental sizes so
obtained are shown in table 4, 5, 6 for f = 0-0, 0-5, 1-0 respectively. Again
for small df;, r has been adjusted to satisfy equation (1). (N.B. The value
of F .o for df,, df, degrees of freedom is equal to 1/F,.,, for df;, df; degrees of
freedom).
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5. DiscussioN

It is apparent from the figures in tables 3 to 6 that for moderate domin-
ance values and heritabilities all experiments need to be carried out on a
very large scale, particularly at extreme gene frequencies.

TaBLE 4
Minimum experimental sizes for detecting dominance by the four designs when the population sample
is not inbred (f = 0) (a, b and c represent frequencies of the dominant allele of 0'5, 0-1, 0-9
respectively)
Dominance ratio
r A M)
Heritability Design 0-2 0-4 06 08 1-0
025 N.C. Exp. II 40,250 10,025 4,425 2,475 1,575
Diallel 42,432 10,560 4,672 2,624 1,664
AB.LP.’s 73,776 18,336 8,064 4,464 2,832
N.C. Exp. ITI 12,840 3,192 1,392 768 480
0-50 N.C. Exp. II 17,225 4,275 1,875 1,025 650
aJ Diallel 18,176 4,544 1,984 1,088 704
: A.B.I.P.’s 31,536 7,776 3,408 1,824 1,152
N.C. Exp. III 4,920 1,200 528 288 168
0:75 N.C. Exp. II 9,550 2,350 1,025 550 —
Diallel 10,048 2,496 1,088 576 —
A.B.LP.’s 17,472 4,272 1,824 960 —
L N.C. Exp. III 2,280 552 240 120 —
(0-25 N.C. Exp. IT 150,575 48,725 27,200 18,775 14,450
Diallel 158,592 51,328 28,672 19,776 15,232
A.B.L.P.’s 124,176 39,744 22,032 15,120 11,616
N.C. Exp. III 16,992 5,448 3,024 2,088 1,608
0-50 N.C. Exp. I1 64,500 20,850 11,625 8,025 6,172
b Diallel 67,968 21,952 12,288 8,448 6,528
3 AB.LP.’s 51,936 16,320 8,976 6,096 4,656
N.C. Exp. III 6,336 1,992 1,104 744 576
075 N.C. Exp. II 35,825 11,575 6,450 4,425 3,400
Diallel 37,760 12,224 6,784 4,672 3,584
A.B.LP.s 27,840 8,544 4,608 3,072 2,352
L N.C. Exp. III 2,784 840 456 312 240
r0:25 N.C. Exp. II 78,925 12,900 3,325 850 —
Diallel 83,136 13,568 3,520 896 —
A.B.LLP.’s 68,304 11,808 3,408 1,152 —
N.C. Exp. III 9,408 1,656 480 192 -
0-50 N.C. Exp. II 33,800 5,500 1,400 350 —
d Diallel 35,648 5,824 1,472 384 —_
A.B.L.P.’s 30,432 5,616 1,776 720 —
N.C. Exp. III 3,816 720 264 120 —
075 N.C. Exp. II 18,750 3,025 750 — —
Diallel 19,776 3,200 832 — —
A.B.I.P.’s 17,808 3,504 1,248 — —
L N.C. Exp. IIT 1,944 432 168 — —_—

2M2
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TABLE 5

Minimum experimental sizes for detecting dominance by the four designs when the population sampled
is partly inbred (f = 0:5), The heritabilities refer to the base, non-inbred population (a, b and ¢
represent frequencies of the dominant allele of 0-5, 0-1, 0-9 respectively)

Dominance ratio
AL

r DR
Heritability Design 0-2 0-4 0-6 0-8 10
(025 N.C. Exp. II 16,575 4,125 1,800 1,000 625
Diallel 17,472 4,352 1,920 1,088 640
AB.LPs 39,072 9,696 4,224 2,304 1,440
N.C. Exp. III 8,232 2,040 888 480 312
0-50 N.C. Exp. IT 6,350 1,550 675 350 200
ad Diallel 6,720 1,664 704 384 320
AB.LP.s 14,976 3,648 1,536 816 480
N.C. Exp. III 2,952 720 312 168 120
075 N.C. Exp. II 2,950 700 275 200 —
Diallel 3,136 768 320 320 —
AB.LP.s 6,912 1,632 624 288 —
L N.C. Exp. III 1,176 264 120 120 -
(0:25 N.C. Exp. II 62,125 20,075 11,200 7,725 5,950
Diallel 65,408  21,18¢ 11,840 8,128 6,272
AB.LP.s 35856 11,520 6,432 4,416 3,408
N.C. Exp. III 10,992 3,528 1,968 1,368 1,056
0-50 N.C. Exp. II 23,875 7,700 4275 2,950 2,250
5d Diallel 25,152 8,128 4544 3,136 2,368
AB.LPs 13,584 4,320 2,400 1,632 1,248
N.C. Exp. III 3,888 1,248 696 480 360
0-75 N.C. Exp. II 11,100 3,575 1,975 1,350 1,025
Diallel 11,712 3,776 2,112 1,408 1,088
AB.LPs 6,144 1,920 1,056 720 528
L N.C. Exp. III 1,512 480 264 168 144
(025 N.C. Exp. II 32,550 5,300 1,350 325 —
Diallel 34,304 5,568 1,408 384 —
AB.LP.s 19,296 3,264 912 288 —
N.C. Exp. III 5,928 1,008 288 120 -
0-50 N.C. Exp. II 12,500 2,000 500 150 —
Diallel 13,184 2,112 512 320 —
9 ABIP.s 7,632 1,344 384 240 —
N.C. Exp. I1I 2,208 384 120 120 —
075 N.C. Exp. II 5,800 925 200 - -
Diallel 6,144 960 320 — -
AB.LP.s 3,696 672 240 — -
L N.C. Exp. III 960 192 120 - —

The N.C. Exp. III is invariably the most efficient design particularly
at extreme gene frequencies and low f values. Only at very low dominance
levels and heritabilities does it cease to be practical, and furthermore it is
less sensitive to changes in gene frequency and inbreeding than are the other
designs.
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TABLE 6

Minimum experimental sizes for detecting dominance by the four designs when the population sampled
is completely inbred (f = 1:0). The heritabilities refer to the base, non-inbred population (a, b
and c represent frequencies of the dominant allele of 0-5, 0-1, 0-9 respectively)

Dominance ratio
A

— —
Heritability Design 0-2 0-4 06 0-8 1-0
0-25 N.C. Exp. IT 8,600 2,125 925 500 300
Diallel 9,088 2,240 960 512 320
A.B.LP.s 23,616 5,808 2,496 1,344 816
N.C. Exp. III 5,904 1,464 624 336 216
0-50 N.C. Exp. II 2,825 675 275 150 150
a Diallel 3,008 704 320 320 320
A.B.IP’s 7,776 1,824 768 384 240
N.C. Exp. III 1,944 456 192 120 120
0:75 N.C. Exp. II 925 200 150 150 —
Diallel 960 320 320 320 —
A.B.LP.s 2,496 528 144 120 —
N.C. Exp. III 624 144 120 120 —
(0-25 N.C. Exp. I1 32,225 10,400 5,800 3,975 3,075
Diallel 33,984 10,944 6,144 4,224 3,264
AB.IP’s 19,488 6,288 3,504 2,448 1,872
N.C. Exp. IIT 7,992 2,592 1,440 1,008 768
0-50 N.C. Exp. I1 10,725 3,450 1,900 1,300 1,000
b Diallel 11,328 3,648 2,048 1,408 1,088
AB.LP.s 6,480 2,112 1,152 816 624
1 N.C. Exp. III 2,664 864 480 336 264
075 N.C. Exp. I1 3,550 1,125 600 400 300
Diallel 3,776 1,216 640 448 320
A.B.LP.’s 2,160 672 384 240 240
L N.C. Exp. III 888 288 168 120 120
(0-25 N.C. Exp. I1 16,875 2,725 675 150 —
Diallel 17,792 2,880 704 320 —
A.B.L.P.’s 10,224 1,680 432 240 —
N.C. Exp. III 4,200 696 168 120 —
0-50 N.C. Exp. I1 5,600 875 200 150 —
., Diallel 5,888 960 320 320 —
A.B.LP.s 3,408 528 240 240 -
N.C. Exp. III 1,392 216 120 120 —
0-75 N.C. Exp. II 1,825 275 200 — —_—
Diallel 1,920 320 320 — —
AB.LP.’s 1,104 240 240 — —
L N.C. Exp. III 456 120 120 — —

The diallel and N.C. Exp. II designs differ little as would be expected
from their e.m.s.’s, and they are both very sensitive to changes in gene
frequency and inbreeding.

Augmented B.I.P.’s require a much larger experimental size than the
other designs at gene frequencies of 0-5 but generally require less individuals
at extreme gene frequencies.
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Inbreeding markedly decreases the total experimental sizes. For
example, one generation of selfing (i.e. f = 0-5) results in the size of all de-
signs except the N.C. Exp. III being reduced by more than a half.

These results can be simply extended to randomised plot designs, the
narrow heritability now being that appropriate to plot means. Consider
the progeny from a random mating population raised at random in 7 plots
of size m. If the phenotypic variance of a population within plots is

Vp = $Dr+1HR+E,
then the variance of plot means (V%) is

Ve = %, B = %DR+iH}:n+E1+mE2,

where E; is the environmental variance within plots and E, is the environ-
mental variance of plot means.
The narrow heritability of plot means (no¢ family means) thus becomes
Wa 1 _ D
m Vi $Dp+3Hg+E\+mE,
The narrow heritability is unchanged, while E (in ¢%) becomes E,+mE,.
Thus MS,, MS, based on plot means have the following expectations

o2
MS, = 2 + rto?
m

2
Ms, = 2L
m
2
Thus E=14+ "’:2"2 (cf. equation (3))
1

0,2

and m = [Xz—g”é —1] —1 (cf. equation (12)).
X095 toz

Since the number of families for any design is fixed, the total experimental
sizes remain as shown in tables 3 to 6.

The experimental sizes shown in tables 4, 5 and 6 all involve experiments
with few families of large size, indeed in many cases of a size too large to be
practical except perhaps for certain plant species. Because of this small
family structure one might well heistate to extrapolate any conclusions
drawn from them to the population at large. However, they do represent
the minimum experimental sizes required to satisfy the criterion that domin-
ance if present should be detected on 95 per cent. of occasions. It is possible
to increase the number of families somewhat without excessively increasing
the number of individuals but a comparison of table 4 for the N.C. Exp. IT
with those of table 3 indicates what happens in the limiting case of many
families of small size.

Total experimental sizes of up to 5000 randomised individuals are not
necessarily excessive, but the experimenter is frequently interested not just
in a single population but in comparing the genetic architecture of several
populations. With very few exceptions this is obviously impracticable.
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Furthermore, we have considered only the simplifying case of many loci,
with additive, dominance effects and gene frequencies constant at all loci
and that these loci are in linkage equilibrium with only two alleles per locus.
With the possible exception of the last one, all these assumptions are likely
to be unrealistic and in general will underestimate the true size required.

Thus in many real experiments there is likely to be a very high chance of
failure to detect non-additive variance when it is present, i.e. the null
hypothesis of no-dominance is accepted when it is false.

It follows, therefore, that since the sensitivity of these variance approaches
to detecting dominance is often low, the estimates of dominance obtained
from the expected mean squares will be of low precision also. It would
appear then that these methods are not generally very useful for detecting
and estimating dominance in randomly mating populations. As is shown
in tables 4, 5 and 6, inbreeding prior to crossing improved their sensitivity
markedly, but it is possible that even if such inbreeding is feasible, natural
selection during the inbreeding process may so distort the genotypic fre-
quencies as to make variance estimates so obtained irrelevant to the base
population.

Two of the designs, the diallel and augmented B.I.P.’s, allow tests for
directional dominance in the comparison of selfed versus outcrossed progeny.
Since all the data are used in obtaining the means of selfed and outcrossed
progeny, such a comparison will be more sensitive than those previously
described. The answer obtained from such a comparison, however, is a
qualitative one in that it will indicate whether or not the genes display
directional dominance and will not give a quantitative measure of the
dominance contribution to the phenotypic variance.

If the tester lines used in the N.C. Exp. III are extreme selection lines
from the population, then directional dominance may be detected by the
covariance of sums on differences (Jinks, Perkins and Breese, 1968).

Since in all these designs MS, (or particularly o2) is a measure of domin-
ance irrespective of the degree of disequilibrium, one can increase the sensi-
tivity of the test by deliberately choosing extreme parents in the mating
scheme. In that such a system will lead to matings either between like or
unlike extreme individuals it will tend to mimic selfing and crossing with the
same advantages and disadvantages as described above.

The difficulties involved in detecting and estimating dominance com-
ponents suggest that it is too ambitious to attempt to investigate these
components in terms of population parameters. Moreover, even if these
difficulties did not exist, the utility of the parameters for predictive purposes
or for providing some understanding of the genetic control of the characters
is limited.

In view of these difficulties, it is likely to prove more useful to take advan-
tage of the more sensitive approaches available with restricted non-random
samples. For example, generations (e.g. F,’s, F,’s backcrosses, etc.) derived
from crosses between extreme groups or individuals in the population, or
lines derived by selection.

6. SUMMARY

1. The efficiency of four methods designed to detect the presence of
non-additive variation for metrical traits in a randomly mating population
are compared theoretically.
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2. These four methods are the Experiments II and III of Comstock and
Robinson (1952), the diallel cross, and an extension of the bi-parental mating
scheme of Mather (1949) and termed A.B.I.P.’s.

3. On the assumption that the non-additive variation is due to dominance
alone, the methods are compared on the basis of the minimum experimental
sizes required to detect significant dominance (P = 0-05) with 95 per cent.
certainty.

4. These sizes are estimated for populations with all combinations of the
following properties: dominance ratios (0-2, 0-4, 0:6, 0-8, 1:0); narrow
heritabilities (0-25, 0-50, 0-75); gene frequencies (0-1, 0-5, 0-9). Various
degrees of inbreeding prior to crossing (f = 0-0, 0-5, 1-0) are also included.

5. The Experiment II and diallel are similar in efficiency and require
a considerably smaller experimental size than does the A.B.I.P.’s at gene
frequencies of a half. At more extreme gene frequencies, the latter design
is generally superior. The Experiment III invariably requires fewer indi-
viduals than all the other designs, and this size varies least with changes in
the genetic architecture.

6. Over most of the situations considered, the minimum experimental
size of all designs is large, usually too large to make them practical for
comparing different populations.

7. 1t is suggested that in view of their low efficiency in general, it might
be better to use methods involving restricted non-random samples, and to
take advantage of the greater precision of such methods even though the
parameters detected and estimated are not population parameters.
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Birmingham University.
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