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SUMMARY

The optimum family structure of two experimental designs ((i) Non segregating
generations plus F,’s and backcrosses; (ii) The North Carolina Expt. III) have
been investigated with respect to the estimation of additive (D) and non additive
(H) genetic variation for a quantitative trait. In the former design it is shown that
the generations should ideally be replicated in proportion to the total variation of
each generation (if this is known) while in the latter, one should aim to sample at
least 20 F, plants. The relative efficiencies of the two designs are compared and
the considerable advantages of the N.C. Expt. III design are illustrated and
emphasised.

1. INTRODUCTION

AN important problem in initiating a breeding programme starting from a
collection of inbred lines is to form an objective judgement of which crosses
are likely to produce the most promising inbred lines on inbreeding the F.
Such judgements are based on information about the mean and genetic
variance of the cross, the latter involving either the additive genetic variance
alone (D) or the inverse dominance ratio (V. D/H) (Jinks and Perkins, 1972).
The present paper is concerned with a consideration of how to estimate
these effects (D and H) with the greatest precision; D and H being as
defined by Mather and Jinks (1971).

Since we are dealing with generations derived from two inbred lines
there are basically two experimental designs which are appropriate—the
Expt. I1I of Comstock and Robinson (1952) which will be referred to as the
North Carolina Expt. III and secondly F, and backcross generations
(Mather and Jinks, 1971). Not only are they relatively simple to execute but
they provide information on D, H and E as well as on epistasis and
genotype-environment interaction (G X E). As their power in testing the
adequacy of the simple additive dominance model is discussed elsewhere
(Kearsey and Jinks, 1968; Jinks and Perkins, 1969; Kearsey, 1970; Pooni
and Jinks, 1976), it will be assumed that epistasis and G X E are absent and
we will concentrate on the estimation of D and H.

With respect to these two types of experiment we may ask the following
questions.

(1) For a given genetic model (narrow heritability and dominance ratio)
and a fixed amount of effort, what is the best distribution of resources into
different families in order to estimate D and H with the minimum variance?
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(2) Does the optimal structure vary with the genetical control and the
parameters (D and H ) to be estimated? If so, is there a realistic compromise
structure that might be used in the absence of any prior information?

(3) What are the relative advantages of the 2 types of experiment?

(4) How large an experiment is it necessary to raise in order to achieve a
given level of estimate reliability?

We will now consider each of these questions in turn.

2. OPTIMAL STRUCTURES

(i) F»’s and backcrosses

If we raise F;’s and F,’s and backcrosses it is possible to obtain variances
which have the expectations shown in table 1(a).

TABLE 1

The statistics and their genetical expectations from the two experimental designs.
(a) F, and backcross experiment, (b) North Carolina Experiment IIT

(a)

Degrees of Components of
Observed freedom varijation
Generation variance n; D H F E,
Non-segregating
(Pl, P2 or Fl) VE ny 0 0 0 1
F, Ve, ny 05 025 0 1
B, Ve, ns3 0-25 025 -05 1
Bz ng ny 0-25 025 0-5 1
(b)
ANOVA
Item df MS e.m.s.
Additive k-1 MS, o2 +2r0%
Non additive k-1 MSp, o +2r0%
Replicate error  2k(r—1) MSgr o’
Where 0 =D
crf‘ = il;H

o’=iD+iH+E,

(a) The additive variation (D) can be estimated from the F,’s and
backcrosses alone, viz.,

D =2[2Ve,~ Vg, — Vg,] (1)

while the expected variance of Vj is:

2 2 2
4VF2+ VBl+ VBz]
na ns3 Ny

Vp = 8[ 2)

where n; are the degrees of freedom of each generation. If N is the total
degrees of freedom (= n, -+ 13+ n4) then we can rewrite (2) in terms of p;, the



EFFICIENCY OF NORTH CAROLINA DESIGN 75

proportion of the total degrees of freedom associated with the ith genera-
tion. Thus

Vs =

8 [4 V12=2+ vz, . véz]
NL p, p3 Da

8
= N[Q]'

Such that P2t p3tps= 1-0.
We can arrive at those values of p; which minimise V5 by differentiating
Q with respect to p, and ps. This yields the result:

N

_ 2VE,
P2 Ve + Vo, + Va,
Vs,
= . 3
ps 2‘/]:.‘,'0"/314'‘/32> ( )
—_ VB2
P Ve, t Va, + Vs,
Under such conditions substituting equations (3) into (2) yields
8
Vp = ﬁ[z Ve, + Vp, + Vi, ). (4)

We can now estimate the optimal proportions of the three different genera-
tions and V5 for various genetical situations from equations (3) and (4) and
these are shownin table 2(a). In this table we have included all combinations
of four values of the narrow heritability, three values of the dominance ratio

TABLE 2

(a) Optimum proportions of F, and backcross individuals for estimating

D under various genetical models. The variance of D(Vp) is given at

the bottom of the table for these optimal designs and is expressed as a

function of N/ VE, where N and Vg, are respectively the total degrees of

freedom and the phenotypic variance of the_F, (b) Minimum experi-
mental size to achieve D/N Vp=1-96

(@

k2
nd  F/NDH 0-2 0-4 0-6 0-8
0 0 F, 053 056 059 062
05 0 B, 024 022 020  0-19
1-0 0 B, 0-24 0-22 0-20 0-19
0-5 10 F, 053 056 05 062
05 10 B, 021 017 012 006
05 10 B, 026 028 029 031
1.0 10 F, 053 056  0-59 —
10 10 B, 018  0-11 0-03 —
10 10 B, 029 033 038 —
NVp/(Vg,)? 115-52  103-68  92:48  81-92

(b)
Nin 2774 622 247 123
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with_either zero or complete correlation of d and h; (as measured by
F/vD . H). Since the actual size of Vp will depend on N and Vg, Vp is
expressed as NVp/ VE,.

(b) From a consideration of table 1 it can be seen that in order to
estimate H, we need to include the non-segregating generations (the paren-
tal inbreds and their F;) whose combined variance will be referred to as V.
Thus:

H =4(Vp,+ Vg, — Vg,— Vi) (5)
and
V_%2 + V_é‘ + lez + V_‘ZE] . (6)
na ns3 na ni

Vg = 32[

Again, assuming that, of the total degrees of freedom, N' (=n;+n,+nz+
na), a proportion p; is associated with the /th generation, we obtain values of
p; which minimise Vy as follows:

pr=Vg/VT
p2=Vg,/VT ‘ ™
ps=Vs,/VT
pa=Vp,/VT
TABLE 3

(a) Optimum proportions of nonsegregating generations (N.S.), F, and backcross individuals for
estimating H under various genetical models (cf._table 2) (b) Minimum experimental size to
achieve H/N V=196

(a)

ha

h/d F/ND.H 0-2 0-4 0-6 0-8
05 0 N.S. 0-22 0-17 0-12 0-04
F, 0-28 0-32 0-37 0-43
B, 0-25 0-25 0-26 0-26
B, 0-25 0-26 0-26 026

NVu/(Ve)? 409 318 238 169
0-5 1.0 N.S. 0-22 017 0-12 0-04
F, 0-28 0-32 0-37 043
B, 0-22 0-19 0-15 0-09
B> 0-28 0-32 0-37 043

NVy/(Vg,)? 409 318 238 169

1.0 0 N.S. 0-20 0-13 0-04 —_
F, 0-29 0-33 0-40 —

B, 0-26 027 0-28 —

B, 0-26 0-27 0-28 —

NVy/(Vg,)? 392 288 200 —

1.0 10 N.S. 0-20 0-13 0-04 —
F 0-29 0-33 0-40 —

B 0-20 0-13 0-04 —

B 0-31 0-40 0-52 —

NVi/(Vg,)? 392 288 200 —

(b)
h/d

05 Nain 157114 30495 10143 4064

1-0 Nmin 9412 1729 534 —
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Where
VT = VE + VB] + V82+ VF2.

Using the optimal proportions, Vg becomes
32 2
V]—‘{=1V;(VB]+ V32+ VF2+ VE) . (8)

The optimal structures and corresponding variances of H are shown in
table 3(a).

(i) The North Carolina Expt. IIT

In the basic N.C. Expt. III of Comstock and Robinson (1952) each F,
individual is crossed (normally as the male parent) to both of its inbred
grandparents. Thus a typical experiment will consist of 2 families from every
one of the k F, parents, each family consisting of r replicates. The analysis of
these data is as shown in table 1(b).

From the mean squares in the analysis of variance we can estimate D, H
and their variances as follows:

15— g MSa—MSg)

2r
1 — g MSp —MSr)
2r
32/MS, MS% )
VD_rz(k—1+2k(r—1)
VA=§E(MS§)+ MS% )
rP\k=1" 2k(r—1)

Since the family size, r, appears in the expectation of both MS, and MSp, as
well as in the degrees of freedom for MSk it is not possible to obtain general
solutions for r and k which minimise these last two equations. However, if
we assume that the total experimental size is sufficiently large, we can
substitute k for (k —1) and solve the equations numerically. Using this
approach we obtain the values of r necessary to minimise Vp and Vg shown
in table 4 together with the corresponding values of Vs and Vi expressed as
a function of N/ VZ,, where Vg, is the phenotypic variance of the F,.

Armed with these values we can estimate N for any given degree of
precision. For example, if we wish to estimate D and H such that they are
both greater than twice their standard errors, then since

D =2h}Vg,
H=2(h/d)*hiVE,

the experimental sizes Np, Ny, required to achieve the above level of
accuracy are
_3-8416NVp and  Ni = 3-8416 NVy
P anive, 7 4(h/d)RiVE,

where 3-8416 is the square of the normal deviate for 5 per cent probability.
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TABLE 4

N.C. Experiment IIl. Optimal replicate sizes (r), parameter variances V
(expressed as NVp/ Vf.-z, NVy/ V?.-z ), minimal experimental sizes (N},
and corresponding values of k necessary to achieve significance

h
Parameter h/d 0-2 0-4 0-6 0-8
D 0 r 9 4 2 2
\%4 23 37 48 51
N 558 448 136 80
k 31 28 34 20
D 0-5 r 9 4 2 2
\%4 23 37 45 47
N 558 448 120 72
k 31 28 30 18
H 0-5 r 35 14 7 4
v 6 9 10 10
N 2310 868 434 240
k 33 31 31 30
D H 1-0 r 8 3 2 —
|4 22 34 34
N 528 204 92
k 33 34 23

This approach yields the values of Np and Ny and hence k shown in
table 4, after adjusting to ensure that k and r are integers. It can be seen
from this table that the optimum value of k varies over a narrow range
(18-34). In fact, if one calculates the minimum experimental size required
with different values of k (table 5) one finds that it maintains a relatively
constant, low value in the range k =20 to 40 but increases rapidly if k falls

TABLE 5

N.C. Experiment IIl. Minimal experimentalsizes (N)

required in order that the estimated component (D or

H) should be 1-96 times its standard error for various

values of k (the number of F, parents) and h,z, (the

narrow heritability). (a) Estimation of D, (b) estima-
tion of H. (N = 2kr)

(a)

2
k 0-2 0-4 0-6 0-8
10 2080 860 460 260
15 600 330 180 90
20 600 280 160 80
25 600 250 150 100
30 600 240 180 120
35 560 280 140 140
40 560 240 160 160

(b)
10 7000 3000 1660 820
15 2880 1140 600 270
20 2400 960 480 280
25 2250 900 500 250
30 2160 840 480 240
35 2170 910 490 280
40 2160 880 480 240
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below 20. Given this property it is therefore expedient always to aim to
sample at least 20 F, individuals, irrespective of the genetical properties of
the population and the parameter to be estimated, and to adjust the number
of replicates in line with the heritability.

3. DEPENDENCE OF STRUCTURES ON GENETICAL CONTROL AND
PARAMETER TO BE ESTIMATED

(i) F>’s and backcrosses

Itis clear from table 2 that the relative proportions of F»’s to backcrosses,
appropriate for estimating D, are comparatively constant (48-38 per cent
backcross individuals) over a wide range of genetic situations. However the
more potence there is, the more individuals of the backcross to the recessive
parent should be raised at the expense of the backcross to the dominant
parent. A similar situation holds with respect to estimating H (table 3), the
proportion of the experiment devoted to backcrosses varying from 50 to 56
per cent with the same dependence on potence as before. Of the remaining
individuals the proportion from the non-segregating generations declines
sharply with an increase in the heritability.

It is interesting to note that the optimum strategy for estimating
dominance is precisely the strategy proposed by Jinks and Perkins (1969) for
use with first degree statistics, i.e., to adjust the number of individuals in each
generation so as to make the variance of every generation mean the same.

A comparison of table 2 and 3 shows that the optimum strategies for
estimating D and H are different; for “D” we require more F,’s than
backcrosses while for “H” the reverse is true, with almost twice as many
backcross individuals being required when heritabilities are high. Given
that we wish to estimate both D and H from the same experiment, is there a
convenient compromise in the design?

In all examples illustrated in table 2(a) and 3(a), the variance of our
estimate of ““H” for a given sized experiment is at least twice and in some
cases up to 4 times greater than the corresponding value for “D”’. This isin
line with intuition since a breeding system involving selfing, in that it reduces
heterozygosity, is not ideal for the study of dominance. It does suggest that
one might afford to lose a little sensitivity in estimating D in order to obtain
more reliable values for H. In fact if we adopt a design incorporating the
proportions shown in table 3 for optimising dominance estimation we find
that our variances for D increase butonly by 12 to 14 per centover the range
of genetical models examined. This would seem to be further justifica-
tion for adopting the approach of Jinks and Perkins (1969), although it
does assume some prior knowledge of the likely variances of the various
generations.

In the absence of any firm knowledge of the likely genetical control of the
characters, we can do no better than adopt the proportions suggested for an
intermediate level of heritability and dominance (e.g., 0-4, 0-5 respectively).
It would appear that unless either the heritability or potence are very high
there is less than a 20 per cent increase in variance with such a design; indeed
in most cases a loss of precision of only a few percent is encountered. In
many experiments of this type currently being practiced there are up to
4 times as many backcrosses as F, individuals scored and such designs will
reduce efficiency by from 70 to 120 per cent.
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(ii) The North Carolina Expt. 111

As was shown in section 2(ii) (see table 5) irrespective of the genetical
control, one needs to sample at least 20 F, parents. Little extra gain in
efficiency is obtained from larger samples while efficiencies decline rapidly
with less than 20 parents. If one chooses to use more than 20 F, parents then
there is a proportional decrease in the number of replicates required so that
the total experimental size remains approximately constant. Obviously it is
not possible to reduce the number of replicates below 2, therefore above
about k£ = 50 the minimum total experimental size will start to increase.

The only significant dependence of the structure on the parameters and
genetical control thus lies in the degree of replication required, more
replication being required for H than D, with low heritabilities and if the
genes are linked in association.

4. RELATIVE EFFICIENCIES OF THE TWO DESIGNS

The minimum total experimental sizes necessary to achieve conventional
5 per cent significance for estimates of D and H are given in tables 4 and 5
for the N.C. Expt. IIl and in tables 2b and 3b for the F,/backcross
experiment.

A comparison of these values for the two designs clearly indicates the far
greater efficiency of the N.C. Expt. III. With a low heritability (0-2) it
requires only one fifth the total experimental size for estimating D and only
one seventieth for H. At high heritabilities, though less marked, the N.C.
Expt. III is from two to 17 times as efficient for estimating D and H
respectively.

These differences in total experimental size are not counter balanced by
the increased effort required in the crosses needed to produce the appro-
priate families. Clearly with a natural inbreeder it is technically easier to
produce F,’s than crosses. However, as the figures above show, the F/
backcross design always requires as many crosses (and generally far more),
than does the N.C. Expt. III, and so there can be no saving in effort at this
stage.

5. EXPERIMENTAL SIZES REQUIRED

It is clear from tables 4 and 5, that in order to estimate D from the N.C.
Expt. ITII no more than 600 completely randomised individuals are required
even for heritabilities as low as 0-2. For H more than 1000 individuals are
required for heritabilities below 0-4. Such a number is not large for a single
experiment, but soon becomes unmanageable if many F,’s are to be
compared simultaneously.

However, it is often technically convenient to raise many organisms in
plots, particularly crop plants which are to be assessed under normal
agricultural practice. By working with plot means the heritabilities are
effectively increased; thus, although the total number of individuals will
increase (individual randomisation being the most efficient design), the
number of replicated experimental units decreases as a function of plot
size. Such a procedure is not however practical with the F,/backcross
experiment.
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With the F,/backcross design the size varies greatly with the genetic
models and parameters to be estimated. It is generally not a practicable
method of estimating dominance although one can successfully estimate
additive variation with moderately sized experiments (1000) providing that
the heritability is not less than 30 per cent.

6. DISCUSSION

In order to predict the properties of recombinant inbred lines derived
from an F,, one requires information either on the additive genetic variation
D oron D together with H (the dominance variation). Providing there is no
linkage, epistasis or genotype-environment interaction the expected vari-
ance of the means of a set of inbred lines derived from an F, is D. Given that
the distribution of line means is approximately normally distributed the
proportion of derived lines exceeding any specified score can be predicted
knowing D and the F, mean. Similarly, if dominance is present, use of the
inverse dominance ratio will enable one to predict the likely score of the best
inbred line to be obtained from inbreeding the F,.

If linkage and epistasis exist among the genes controlling the character in
question the estimate of D obtained from early generations will be biassed,
but generally the bias will be precisely the same among the derived inbreds
and hence will still be the appropriate predictor of inbred performance.
Apart from the very real possibility that the ranking of genotypes varies over
seasons or locations, genotype environmental interaction does not present
any problems in prediction.

Thus in order to assess the future potential of generations derived from a
number of inbred lines and hence to choose particular crosses to inbreed,
one simply requires efficient estimates of D (and possibly H). The previous
evidence clearly indicates that the N.C. Expt. III is always the most efficient
approach to obtain these estimates. For every pair of inbred lines each
experiment need involve no more than 20 F; individuals. The data may be
recorded on individuals although in many practical situations replicated
plots are more efficient. Promising crosses identified in this way should then
be selfed for some 6 to 8 generations without selection, using the method of
individual seed descent from some 100 or more F; individuals. Atthe end of
the inbreeding programme the derived inbreds can then be assessed and
selected in large replicated trials.

For many commercial traits there are optimal harvesting times which
may vary with the genotype. Such situations can be considered as a special
type of genotype environmental interaction. Again this poses no real
problem since a given N.C. Expt. III can be raised with several replicate plots
per family, two or more plots being randomly assigned to each one of the
harvesting dates. Clearly if ‘D’ shows a major interaction with harvesting
date it is possible that different line crosses would be needed for each, but the
predictions described above would resolve this problem before the inbreed-
ing programme is initiated.

Clearly the number of pairs of crosses that can be examined in this way is
limited by time and space and it is likely that ten or less would be the norm at
any given site and year. The identification of this small subset of potential
lines from a much larger collection of material requires a quite different
approach and this is presently under investigation.
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