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Joint analysis of spatial genetic structure and
inbreeding in a managed population of Scots pine
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We have investigated the fine-scale spatial genetic structure in
a managed Scots pine forest. For this purpose, we perform a
Bayesian genetic-cluster analysis of 96 geographically mapped
individual seed trees of Swedish Scots pine based on 14
microsatellite loci. The analysis was carried out with the
recently developed program GENECLUST (François et al.,
2006), which provides the facility to jointly incorporate both
spatial information from a geographical neighborhood structure
through a Potts–Dirichlet model and account for variable
degrees of inbreeding within the clusters. To evaluate whether
inbreeding and spatial interaction should be included in the

best-fitting statistical model for our data, we used the deviance
information criterion (DIC), a weighted measure of model fit that
accounts for an effective number of free parameters in a model.
Analysis shows that a model with a single estimated cluster,
with high levels of inbreeding (0.25) and with a moderate
amount of spatial dependency within the unique cluster
(C¼ 0.2–0.4), best explains the data. We also carried out
Bayesian parentage analysis, which enabled us to exclude the
possibility that the sample constitutes one single full-sib family.
Heredity (2009) 103, 90–96; doi:10.1038/hdy.2009.33;
published online 22 April 2009
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Introduction

Differences in genetic structure within and between
populations in tree species are mainly because of the life
form and breeding system. The availability of highly
variable molecular markers has facilitated the analysis of
fine-scale genetic structure in natural tree populations.
The fine-scale structure has been found in some forest
tree species (Sork et al., 1993; Berg and Hamrick, 1995;
Streiff et al., 1998; Dutech et al., 2002; Hardy et al., 2006).
These tree species are characterized by either limited
seed dispersal or restricted pollen and seed dispersal.

Pines are wind-pollinated and the seeds generally
have wings that facilitate wind dispersal (Ledig, 1998).
Together with a predominant random mating system
(Koski, 1970), these features contribute to little or no
genetic structure being found in undisturbed pine
forests: both in large (Gullberg et al., 1985; Karhu et al.,
1996; Dvornyk et al., 2002; Garcı́a-Gil et al., 2003) and in
fine geographic scales (Knowles, 1991; Xie and Knowles,
1991; Parker et al., 2001; Uchiyama et al., 2006; Marquardt
et al., 2007). On the other hand, fragmentation and
bottlenecks may cause a genetic structure because of self-
fertilization and mating among genetically related
individuals (Vogl et al., 2002; Robledo-Arnuncio et al.,
2004; Boys et al., 2005). When mating occurs between
genetically related individuals, it increases inbreeding.
Inbred individuals may have lower fitness because of the
expression of recessive deleterious alleles (Charlesworth

and Charlesworth, 1987). Inbreeding also results
in a decreased level of genetic diversity, which is of
major concern in forest tree breeding and conservation
programs.

Forest management practices have also been shown to
increase genetic structure compared with natural forests,
especially if the breeding practices imply drastic reduc-
tion of the effective population size (Young and Merriam,
1994; Finkeldey and Ziehe, 2004). Population size
reduction could potentially increase the rate of self-
fertilization because of the reduction in number of local
compatible mates. Moreover, even under random
mating, a smaller number of parent trees will increase
the probability of seed cohorts with full-sib relationships
(Surles et al., 1990; Muona and Harju, 1989; Robledo-
Arnuncio et al., 2004).

Recently, several Bayesian clustering methods for
inference of population genetic structure have been
developed. These methods are generally referred to as
assignment methods and use allele frequency data of
molecular markers to ascertain the population member-
ship of individuals by assuming either fixed or variable
numbers of population clusters (Manel et al., 2005). In the
original methods developed by Pritchard et al. (2000),
Dawson and Belkhir (2001) and Corander et al. (2003),
spatial information was not explicitly included in the
modeling. However, some recent Bayesian assignment
methods incorporate information from the geographical
coordinates of individuals, by using prior distributions
for the spatial distribution of individuals in a cluster
(Wasser et al., 2004; Guillot et al., 2005; François et al.,
2006; Corander et al., 2008). Simulation studies have
shown that incorporation of geographical information
into assignment methods can result in better statistical
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performance (Chen et al., 2007). It is well-recognized that
inbreeding perturbs the Hardy–Weinberg equilibrium
and can lead to spurious aggregates of population
substructure (for example, Guinand et al., 2006). With
the exception of the methods developed by François et al.
(2006) and Gao et al. (2007), the assignment methods are
based on the assumption of Hardy–Weinberg equili-
brium within clusters, and may therefore yield biased
estimates of the number of clusters in the presence of
inbreeding.

In this study, we jointly estimated the fine-scale genetic
structure and inbreeding level in a managed tree
population of Scots pine using a recently developed
Bayesian hidden Markov model. We analyzed 96
geographically mapped individual seed trees of Swedish
Scots pine using 14 microsatellite loci. The analysis was
carried out using the program GENECLUST (François
et al., 2006), which provides the facility to jointly
incorporate both spatial information from a geographical
neighborhood structure through a Potts–Dirichlet model
and account for variable degrees of inbreeding within the
clusters. To evaluate whether inbreeding and spatial
interaction should be included in the best-fitting statis-
tical model for our data, we used the deviance informa-
tion criterion (DIC), a weighted measure of fit that
accounts for an effective number of free parameters in a
model (Spiegelhalter et al., 2002; Celeux et al., 2006). We
evaluated DIC statistics for several models with and
without inbreeding, and with increasing levels of spatial
connectivity.

Materials and methods

Scots pine material
Scots pine is a major conifer species across the northern
boreal zone in Europe and Asia. Its distribution is the
widest among the pine species, from southern Spain
(381N) to north Finland (68 1N), and from western
Scotland (6 1W) to Okhotsk Sea in eastern Siberia
(135 1E) (Mirov, 1967). Within its distribution Scots pine
grows at elevations from sea level to 2400m and in many
different environments in terms of temperature, soil
quality and humidity. Scots pine is a keystone species, on
which many other plants, insects, birds and animals
species depend (Persson, 1980). Like the majority of the
pine species, Scots pine has a diploid genome with a
chromosome number of 2n¼ 24 (Saylor, 1972). Scots pine
is wind-pollinated and has wings on the seeds that
facilitate wind dispersal, over distances that can be
characterized by an exponential distribution with a tail
that descends to a value close to zero within a few tens of
meters. However, some long-distance animal-mediated
seed dispersal cannot be ruled out (Lanner, 1998).

The trees for this experiment are situated in a
population 25 km north-east of Umeå, Sweden and
originate from wind-pollinated seed trees that were
established in 1965. The number of seed trees was
around 50 per hectare. Seedlings were allowed to
establish until 1979, after which the seed trees were cut
down. The population was thinned in 1989, resulting in a
collection of trees with homogenous height and age.

We sampled needles, marked and estimated geo-
graphic positions with a satellite-based GPS system of
96 trees according to a square lattice. We sampled 25

hectares out of a total managed area of 65.9 hectares. The
aim was to sample trees as close as possible to 50m apart
(that is, a lattice with 50� 50m cells). However, the
lattice deviated slightly from this ideal because the
seedlings had established naturally (see the Voronoi
tessellation in Figure 1). Needles were sampled within 1
day in November 2004 and stored in a �80 1C freezer.

DNA extraction and microsatellite amplification
DNAwas extracted from needles with the DNeasy Plant
Mini Kit (Qiagen, Solna, Sweden, Cat number: 69104).
Twelve nuclear microsatellite primers developed for
Pinus taeda (Elsik et al., 2000; Auckland et al., 2002;
Liewlaksaneeyanawin et al., 2004; Chagn et al., 2004) and
Pinus sylvestris (Soranzo et al., 1998) were selected to
genotype all the individuals. The amplified microsatellite
primers are PtTX2146, PtTX3107, PtTX3116, PtTX4001,
PtTX4011, LOP1, LOP3, SPAC 12:5, SPAG 7:14, SPAC
11:8, SsrPt_ctg64 and Ssr_ctg4487b. Primer SsrPt_ctg64
amplified three different polymorphic microsatellite loci,
namely ctg64a, ctg64b and ctg64c. The primers incorpo-
rated fluorescent dyes (D2, D3 and D4). The PCR volume
was 25 ml and consisted of 50 ng of genomic DNA
template, 0.2mM of each primer, 0.2mM of each dNTP,
2.5 ml of 10XTaq buffer (500mM KCl, 100mM Tris-HCl, 1%
Triton X-100, Promega, Nacka, Sweden, Cat number:
A3511), 2mM of MgCl2 (Promega) and two units of Taq
polymerase (Fermentas, Helsingborg, Sweden, Cat num-
ber: EP0405). Amplifications were carried out using a
Peltier Thermal Cycler PTC-225. The amplification
protocol for SPAC 11:8, SPAC 12:5 and SsrPt_ctg64
primers was 5min at 94 1C; followed by 35 cycles of
1min at 94 1C, 1min at 55 1C, 1min at 72 1C; and finally
one cycle for 10min at 72 1C. The amplification condi-
tions for PtTX4001, PtTX3107, LOP3 and SsrPt_ctg4487b
primers were 5min at 94 1C; followed by touch-down
from 55 1C down to 45 1C and 25 cycles of 1min at 94 1C,
1min at 45 1C, 1min at 72 1C; and finally one cycle for
10min at 72 1C. Primers PtTX3116, PtTX4011, PtTX2146,
SPAG 7:14 and LOP1 were amplified under the same
touch-down protocol described before, except for the
gradient temperature that started at 60 1C down to 50 1C.
PCR amplifications were resolved in a Beckman Coultier
CEQ-8000 using an internal size standard (400 bp size
standard) and multiplexing the runs for a maximum of
three different SSR loci, and allele scoring was done by
using the CEQ system software.

Statistical analysis
GENECLUST (François et al., 2006) is based on the
concept of Hidden Markov Random Field (HMRF),
which models the spatial dependencies in cluster
membership. Hidden Markov models (HMMs) assume
that the data are a noisy realization of an underlying
process with Markovian dependence. In other words, a
HMM is a one-dimensional Markov chain observed in
noise (Cappé et al., 2005). HMRFs are generalizations of
HMMs to the two-dimensional plane and are therefore
suitable for analysis of spatially structured observations.
Markov random fields provide a statistically well-
founded basis for modeling spatial autocorrelation,
which is of major interest to many biological applications
(Sokal and Oden, 1978). Markov random field models are
motivated by the concept of conditional independence;
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that is, the dependence of a random variable associated
with a particular site on the random variables at all the
other sites can be specified by the values of random
variables in the neighboring sites only (Ripley, 1981;
Cressie, 1993). In population genetics, HMRFs can
account for the fact that individuals from spatially
continuous populations are more likely to share cluster
membership with their close neighbors than with distant
individuals. GENECLUST can detect geographical dis-
continuities in allele frequencies and estimate individual
population memberships as an unobservable parameter.
To account for the dependencies among cluster labels,
GENECLUST uses the Potts model, parameter C of
which specifies the importance of spatial interactions.
The value of C is generally non-negative. Zero values of
C indicate no special dependency; hence the statistical
model used by STRUCTURE (Pritchard et al., 2000) is
recovered.

The first step in GENECLUST is to calculate a
neighborhood structure from the geographical coordi-
nates with Dirichlet tiling (also known as Voronoi
tessellation). Two sampled individuals are neighbors if
their Dirichlet cells share a border. The neighborhood
structure for the sampled Scots pine trees is shown in
Figure 1. Default priors were used for all parameters,
that is, Dirichlet distributions Dir(a, y, a) with a¼ 1 on
allele frequencies fk, b(4, 40) prior on each fk and fixed
values of the spatial interaction parameter C. GENE-
CLUST also provides an estimate for the actual number
of cluster in the data, K. For well-chosen values of C, the
hidden Markov model acts as a regularizer, and tends to
empty spurious clusters when Kmax exceeds K. In order
to avoid problems associated with specification of a

single Kmax (Evanno et al., 2005), we used the two values,
Kmax¼ 2, 3.

We fixed C to different values (0, 0.2, 0.4, 0.6) and
compared the DIC (Spiegelhalter et al., 2002) of models
with and without inbreeding, and for two values of Kmax.
The basic principle of DIC is that models with smaller
values are preferred to models with larger values. For a
model with parameter y and for some genetic data, y, the
DIC can be computed by adding a penalty term, pD, to
the averaged deviance, D(y)¼�2 Ey [log p(y|y)|y]. The
penalty term is meant to represent an effective dimen-
sion for y, which is estimated from the data. The penalty
term is usually computed as pD¼D(y)þ 2 log p(yest|y),
where yest represents an estimate of y. Provided that the
deviance, �2 log p(y|y), is available in closed form, D(y)
can easily be approximated from an MCMC run by
taking the sample mean of the simulated values. With
flat priors or when the likelihood overwhelms the priors,
DIC behaves similarly as the Akaike Information
Criterion (Akaike, 1974). In general, DIC contains a
useful estimate of the effective number of parameters
even when many of them are defined as latent variables,
as is the case in many hierarchical models. We
implemented the DIC for GENECLUST models, where
the parameter y comprised the set of allele frequencies,
fk, the set of individual cluster labels, z, and the set
of inbreeding coefficients, j, when inbreeding was
included in the model. We used posterior average
estimates for the allele frequencies and for the inbreeding
coefficients as computed by GENECLUST, and estimated
the cluster configuration from the cluster membership
coefficients, after re-assigning each individual to their
most likely cluster.
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Figure 1 Neighborhood structure of the 96 sampled Scots pine trees obtained from a Voronoi tessellation. Trees sharing a border are
considered as neighbors.
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Paternal genotypes were reconstructed using the
Bayesian program Parentage 1.0 (Emery et al., 2001).
We used two chains and the Metropolis-coupled MCMC
option. Burn-in was set to 100 000 iterations, and
sampling based on the next 100 000 (with a thinning of
10). Prior for the allele frequencies was the standard
Dirichlet distribution and prior for the number of fathers
and mothers was Unif(1,96) and Model 1. Each male is
equally likely to be the father of any offspring.

Results

The number of alleles and their frequencies are available
in the online supplement. The number of alleles per SSR
locus ranges from 2 (ctg64a) to 47 (SPAC12:5). As
expected, the SSR loci that originated from cDNA
libraries (for example, ctg64) showed lower allelic
richness than genomic SSR loci. As reported earlier in
the literature, the SPAC12:5 locus turned out to be highly
polymorphic (Soranzo et al., 1998).

For each value of Kmax¼ 2–3, for levels of the spatial
interaction parameter C ranging from 0 to 0.6, and
considering models with and without inbreeding, we
computed an average of the DIC over the best 20 values
obtained after 100 replicates of GENECLUST runs. Using
a total of 5000 sweeps for the MCMC program and
discarding the 2500 first sweeps as a burn-in period, we
carried out a total number of 1200 runs and compared 12
models.

Runs with C greater than zero generally converged to
a single cluster. Runs with C¼ 0 generally ended with a
large majority of individuals assigned to a single cluster,
and with a small minority, not exceeding five indivi-
duals, sometimes assigned to a second cluster. Table 1
reports DIC values corresponding to each model.
Averaged DICs ranged from 9149 to 9270, with s.d.’s
ranging from 7 to 30. The smallest values of the DIC were
reached for models with inbreeding and for a spatial
interaction parameter around 0.2–0.4. For these models,
the effective number of parameters was estimated

around 505. The highest values were reached for models
without inbreeding and with the spatial parameter C set
to 0. All models without inbreeding performed worse
than those including inbreeding. Posterior estimates of
the inbreeding coefficient were computed for models
with C¼ 0.4 by pooling the 20 runs with the lowest DICs
(DICo9140). The posterior mean of the inbreeding
coefficient was equal to 0.248 (median¼ 0.249), with a
95% credibility interval ranging from 0.217 to 0.283. The
posterior s.d. was estimated to be 0.018. Figure 2a shows
a histogram for 10 000 simulated values from the poster-
ior distribution. Using the same procedure, we computed
posterior estimates from models with C¼ 0. The poster-
ior mean of the inbreeding coefficient was equal to 0.249
(median¼ 0.249), with a 95% credibility interval ranging
from 0.215 to 0.284. The posterior distribution was not
different from the one obtained by using higher values of
C (Figure 2b). These results may indicate that, in the case
of absence of population structure, the estimation of the
inbreeding coefficient is robust to the presence of a
small amount of spatial autocorrelation in the data. To
conclude, the values of the DIC indicated that a model
with a single estimated cluster, relatively high levels of
inbreeding and a moderate amount of spatial dependen-
cies within the unique population best explains the data.
Analyses of paternity were carried out in order to

reconstruct the parental genotypes. The analyses sup-
ported 19 fathers and 15 mothers as the progenitors of
the 96 sampled trees. The analyses identified a very small
number of full- and half-sibs. By setting a probability
limit at 0.9, we found the following full-sib pairs: 27–37
(P¼ 0.973), 23–78 (P¼ 0.999), 13–90 (P¼ 0.906), 54–87
(P¼ 0.916); and half-sib pairs: 27–37 (P¼ 0.984), 47–49
(P¼ 0.933), 13–90 (P¼ 0.956), 24–78 (P¼ 1.000) and 54–87
(P¼ 0.955). Note that 27–37 can be both half-sibs and
full-sibs with very high probability. Hence, we can
conclude that seed trees do not belong to a single full-
sib family, which is indicated by the inbreeding level.
Instead, they must share some form of relationship
before they are selected as seed trees.

Discussion

The fine-scale genetic structure of 96 geographically
mapped Scots pine trees from a stand in northern
Sweden was analyzed using 14 SSR loci. Our sample
size and number of loci have earlier been shown to be
sufficient for the study of spatial genetic structure in tree
populations (Cavers et al., 2005). Assignment analysis
carried out with the program GENECLUST (François
et al., 2006) and model comparison based on the DIC
show that a model with a single estimated cluster, with
high levels of inbreeding and with a moderate amount of
spatial dependencies within the unique cluster (C¼ 0.2–
0.4), best explains the data. Although the DIC has been
used earlier to decide which runs of a Bayesian
clustering program should be kept after a multiple-run
analysis (François et al., 2008), its systematic use for
deciding which model best fits the data is new in this
context. The four versions of DIC implemented in this
study were motivated by the fact that these measures
could be directly and easily computed from the output of
the program.
Different approaches have been used before to

evaluate spatial clustering of genotypes within stands

Table 1 Average values of the deviance information criterion (DIC)
for spatial genetic models with Kmax¼ 2–3 clusters, with levels of
the spatial interaction parameter c ranging from 0 to 0.6, and with
absence (n) or presence (y) of inbreeding

Spatial parameter Inbreeding coefficient DIC

Kmax¼ 2
0 n 9270 (30)

y 9163 (9)
0.2 n 9238 (22)

y 9151 (7)
0.4 n 9233 (14)

y 9149 (8)
0.6 n 9240 (23)

y 9154 (9)

Kmax¼ 3
0 y 9164 (18)
0.2 y 9154 (11)
0.4 y 9157 (16)
0.6 y 9161 (15)

Values were averaged over the 20 best runs of the computer
program GENECLUST (parenthesized values are s.d.). We used a
total of 100 runs for each model.
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(or populations). The simplest method is to assess the
degree of clustering by plotting the trees on a map
(Knowles, 1991). Another method is based on dividing
the stand into subplots and estimating the among-
subplots differentiation by means of gene diversity (Gst

or Fst) (Streiff et al., 1998). The most commonly used
procedure estimates the similarity between pairs of
genotypes or subplots (based on allele frequencies)
within a specified distance and evaluates whether
the pairs are more similar than expected by chance
under random spatial arrangement (Epperson, 1992;
Parker et al., 2001; Cavers et al., 2005). However, these
methods are not very useful when dealing with inbred
populations.

Only few simulation studies have evaluated the effect
of inbreeding on results from assignment and cluster
analysis. Guinand et al. (2006) carried out a simulation
study that investigated how different levels of inbreed-
ing (F¼ 0, 0.05 and 0.15) influenced the accuracy of
assignment analysis. They concluded that inbreeding
had no effect on the accuracy of the assignments.
However, it should be noted that Guinand et al. (2006)
used a version of STRUCTURE that does not allow
for proper modeling of inbreeding. Gao et al. (2007)
presented a method (implemented in a program called
InStruct) that extends the algorithm in STRUCTURE by
eliminating the assumption of the Hardy–Weinberg
equilibrium within clusters. Based on extensive simula-
tions with various levels of selfing, they showed that
their approach could avoid spurious signals of popula-
tion substructure that could lead to biased assignments.
However, the differences in assignment bias compared
with STRUCTURE were mostly relatively small, and they
did not evaluate how estimation of K was influenced by
inbreeding. In addition, the program InStruct does not
allow inference based on spatially explicit priors, as does
GENECLUST, and is therefore less appropriate for
analysis of our data.

Our results indicate a single estimated cluster and a
relatively high overall inbreeding coefficient of 0.250,
which correspond to co-ancestry of one full-sib family or
a mixture of half-sibs and full-sibs established from
already related seed trees. Based on the parentage
analysis, the results of which support a total of 19
fathers and 15 mothers and only nine pairs of trees that
were either full- or half-sibs, we can conclude that the
trees do not form a single full-sib family. The high overall

inbreeding coefficient contrasts with the efficient me-
chanisms for purging inbreeds described in Scots pine
(Muona et al., 1987; Kärkkäinen and Savolainen, 1993).
On the other hand, this apparent contradiction could be
explained if some of the trees are the result of mating
between already related parent trees, as supported by the
parentage analysis.

In Scots pine, increased selfing is generally not a
problem in natural stands because of heavy selection
against inbreeds at the seed and seedling stages (Muona
et al., 1987; Kärkkäinen and Savolainen, 1993). However,
in low-density stands (partially harvested forests), the
remaining inbreed seedlings may be eliminated less
efficiently due to lower competition. Natural regenera-
tion from a few trees can potentially affect the population
structure and mating system because of the reduced
initial reproductive population size. Studies carried out
in managed pine populations support changes in the
level of inbreeding after natural regeneration from
partially removed forests, but the degree and direction
of the disturbance vary among reports. Although some
studies indicate an increase in the inbreeding level
(Rudin et al., 1977; Farris and Mitton, 1984), others
support absence (Yazdani et al., 1989), or even decreased
inbreeding (Marquardt et al., 2007). Yazdani et al. (1989)
concluded that seed trees had a low genetic contribution
to regeneration compared with seeds from felled trees
and surrounding trees. The discrepancies among studies
may be because of factors such as percentage of tree
removal (final forest density), level of gene inflow from
the surrounding forest and level of genetic relatedness
between the trees left after harvesting.

Spatial analyses have shown some level of clustering
of genotypes within populations of other conifers
(Knowles et al., 1992; Cavers et al., 2005). However,
cluster sizes are quite small (5–50m across), suggesting
that they are primarily a result of limited seed dispersal,
and that the clusters are made up of close relatives;
Knowles et al. (1992) compared spatial genetic clustering
in two stands of Larix laricina. The stand had naturally
regenerated after clear-cutting, presumably by a few
remnant individuals scattered within the stand, and
showed significant spatial clustering of genotypes. No
clustering, however, was observed in a nearby old-field
stand.

It is possible to use molecular markers in combination
with powerful Bayesian statistical methods for joint

Figure 2 Posterior density of the inbreeding coefficient from the 20 models with lowest values of DIC, computed from GENECLUST using
Kmax¼ 2 clusters (10 000 simulations). (a) Model with spatial parameter C¼ 0.4. (b) Model with spatial parameter C¼ 0.
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estimation of spatial genetic structure and inbreeding in
tree populations for estimation of genetic parameters that
potentially could be used for monitoring forest-manage-
ment practices, but results from comparative experi-
ments with managed and non-managed stands are
needed before we can draw a final conclusion. Results
from this kind of study would be of special relevance in
forestry, wherein the observation of long-term effects of
forest management on genetic structures is retarded by
the long rotation cycles.
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