

MINI REVIEW

Commonalities and differences between *Brassica* and *Arabidopsis* self-incompatibility

Masaya Yamamoto and Takeshi Nishio

In higher plants, the self-incompatibility mechanism is important for inhibition of self-fertilization and facilitation of out-crossing. In Brassicaceae, the self-incompatibility response is mediated by allele-specific interaction of the stigma-localized S-locus receptor kinase (SRK) with the pollen coat-localized ligand (SCR/SP11). All self-incompatible Brassicaceae plants analyzed have been found to have the SRK and SCR/SP11 genes in the S-locus region. Although *Arabidopsis thaliana* is self-compatible, transformation with functional SRK-SCR genes from self-incompatible *Arabidopsis* species confers the self-incompatibility phenotype to *A. thaliana*. The allele-specific interaction between SRK and SCR activates the downstream signaling cascade of self-incompatibility. Yeast two-hybrid analysis with a kinase domain of SRK as bait and genetic analysis suggested several candidate components of self-incompatibility signaling in *Brassica*. Recently, *A. thaliana* genes orthologous to the identified genes for *Brassica* self-incompatibility signaling were evaluated by using a self-incompatible transgenic *A. thaliana* plant and these orthologous genes were found not to be involved in self-incompatibility signaling in the transgenic *A. thaliana*. In this review, we describe common and different aspects of S-locus genomic regions and self-incompatibility signaling between *Brassica* and *Arabidopsis*.

Horticulture Research (2014) 1, 14054; doi:10.1038/hortres.2014.54; Published online: 29 October 2014

INTRODUCTION

Higher plants have a self-incompatibility mechanism for preventing self-fertilization and facilitating out-crossing. Self-incompatibility is considered to contribute to the maintenance of genetic diversity and avoidance of inbreeding depression. The Brassicaceae self-incompatibility system is well studied. Recognition specificity of this self-incompatibility system is determined by a diploid genotype of a parent plant. In self-pollination, pollen germination and pollen tube penetration of the cell wall of stigma papillar cells are inhibited.

Self-incompatibility is generally controlled by a single locus, the S locus. In Brassicaceae, the *S-locus receptor kinase* (SRK) and *S-locus cysteine rich protein/S-locus protein 11* (SCR/SP11) genes, which encode highly polymorphic proteins as female and male determinants of recognition specificity, respectively, have been found at the S locus.^{1–3} Because these two genes are tightly linked with each other and inherited as a single Mendelian locus, a set of alleles of the S-locus genes is referred to as S haplotype.⁴ The SRK gene is expressed in the stigma papillar cells and encodes a plasma membrane-localized receptor kinase, which has a highly polymorphic extracellular receptor domain (S domain, hereafter) followed by a transmembrane domain and a serine/threonine kinase domain.^{1,5} Some variants of SRK exhibit more than 30% amino-acid sequence divergence in the S domain.^{6,7} SCR/SP11 (SCR hereafter) is expressed in anthers and its translational products are secreted to the pollen coat.⁸ SCR is a small peptide, ~60 amino acids of mature form, and functions as the ligand for SRK.^{2,9,10} SCR is also highly polymorphic and less than 50% amino-acid sequence similarity is shared between S haplotypes.^{2,7,11–13} Although they have high sequence diversity, all SCR proteins appear to form a typical defensin-like 3D structure consisting of three β-sheets and one α-helix.^{14,15} In self-pollination, stigma-localized SRK interacts with SCR of the same S haplotype located on the pollen surface and activates a self-incompatibility signaling cascade, resulting in

inhibition of self-pollen germination and tube penetration of the stigma papillar cell wall.

Arabidopsis thaliana, which is a model plant belonging to the family Brassicaceae, had not been used for studies of self-incompatibility mechanism because *A. thaliana* is a self-compatible species due to lack of functional SRK and/or SCR.^{16–21} However, transformation with functional SRK-SCR genes from self-incompatible *Arabidopsis* and closely related species, such as *Arabidopsis lyrata*, *Arabidopsis halleri* and *Capsella graciflora*, confers self-incompatibility phenotype to *A. thaliana*,^{20,22–26} indicating that *A. thaliana* has the molecular components that are required for self-incompatibility signaling and can be used for studies of the Brassicaceae self-incompatibility mechanism.

The plant family Brassicaceae contains 338 genera and 3709 species, 308 of the 338 genera being assigned to 44 tribes.^{27,28} These tribes are grouped into three major lineages.^{29–32} *Arabidopsis* and *Brassica* belong to lineage I and II, respectively,³³ and these two genera were separated approximately 15 million years ago. Whole genome duplication or triplication has occurred only in the *Brassica* lineage but not in *Arabidopsis* since their separation. These observations suggest that *Brassica* and *Arabidopsis* would have different genetic backgrounds, although both self-incompatible plants of these two genera possess the SRK and SCR genes for recognition specificity of self-incompatibility. In this mini-review, we describe the molecular components functioning in SRK-mediated self-incompatibility signaling in *Brassica* and *in planta* evaluation results of these identified molecular components by using self-incompatible transgenic *A. thaliana*. We also discuss common and different aspects of self-incompatibility between *Brassica* and *Arabidopsis*.

THE S-LOCUS IN BRASSICA AND ARABIDOPSIS

Although introduction of *Arabidopsis* SRK-SCR genes confers the self-incompatibility response to *A. thaliana*,^{20,22–26} construction of

self-incompatible transgenic *A. thaliana* plants by introduction of the *Brassica SRK-SCR* gene pair has not succeeded.³⁴ One possible explanation for this failure is that *Brassica* SRK and/or SCR are too greatly differentiated to function in *Arabidopsis*.

Molecular genetic studies have elucidated an interesting difference of the *S*-locus regions between *Brassica* and *Arabidopsis*. In *Brassica*, three genes are generally found in the *S* locus. In addition to the *SRK* and *SCR* genes, the *S-locus glycoprotein (SLG)* gene is located at the *S* locus. The *SLG* gene encodes a stigma soluble glycoprotein showing high similarity to the *S*-domain of SRK. Like SRK, *SLG* is a highly polymorphic protein between *S* haplotypes. The role of *SLG* in self-incompatibility remains unclear. Because some *S* haplotypes lack the functional *SLG* gene at the *S* locus,³⁵ the *SLG* gene is not considered to be an essential component in the self-incompatibility in *Brassica*. The *S* domain of SRK of a self-compatible *Brassica rapa* *S-54* mutant has been found to be 100% identical to the *S-54 SLG* gene,³⁶ suggesting that gene conversion between *SRK* *S* domain and *SLG* occurred, although this gene conversion caused the loss of the SRK function. This observation indicates one possible role of *SLG* in self-incompatibility, namely that the *SLG* gene contributes to production of a new SRK allele by gene conversion.

The *SLG* gene has not been found at the *S* locus of any *A. lyrata* *S* haplotypes. Instead of the *SLG* gene, the *ARK3* gene, which is closely related to the *SRK* gene and contains the *S* domain, transmembrane domain and kinase domain, is located at the *A. lyrata* *S* locus. The *ARK3* gene, as well as *SRK* and *SCR*, has been affected by positive selection.³⁷ In addition, gene conversion between *SRK* and *ARK3* was detected as observed in the *Brassica* *S* locus. This gene conversion occurred in the region of the kinase domain,³⁷ and possibly functioned to promote SRK evolution to produce new substrate specificity.

POSITIVE REGULATORS IN THE SELF-INCOMPATIBILITY SIGNALING PATHWAY IN *BRASSICA*

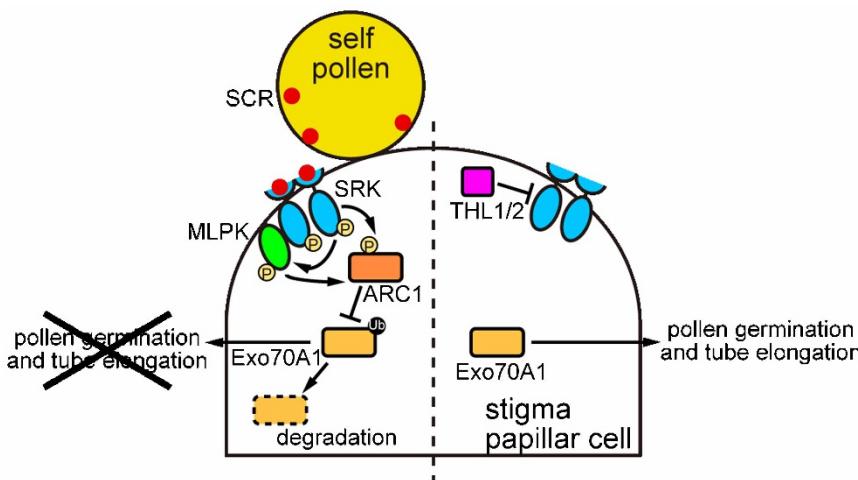
M-locus protein kinase (MLPK) has been identified in self-incompatible *B. rapa* plants as a positive regulator of *Brassica* self-incompatibility.³⁸ *MLPK* is a protein kinase and a self-compatible *mlpk* mutant of *B. rapa* has a G194R mutation in its kinase domain.³⁸ *In vitro* kinase assay has shown that *MLPK* has autophosphorylation activity, whereas *MLPK* protein of the self-compatible *mlpk* mutant has no activity.³⁸ The *MLPK* gene produces two alternative transcripts (*MLPKf1* and *MLPKf2*) from distinct transcription initiation sites.³⁹ *MLPKf1* and *MLPKf2* produce proteins of 404 and 410 amino acids, respectively, and only their N-terminus sequences are different between them.³⁹ *MLPKf2* transcripts are more abundant than *MLPKf1* transcripts in the stigma.³⁹ Both *MLPK* forms have an N-myristylation motif, which functions as a plasma membrane targeting motif.^{38,39} Bimolecular fluorescence complementation assay has indicated that *MLPK* interacts with SRK at the plasma membrane and that this interaction is independent of the *SCR* peptide, suggesting that *MLPK* might form hetero-oligomers with SRK on the plasma membrane.³⁹ In addition, *in vitro* kinase assay has revealed that *MLPK* is phosphorylated by SRK, suggesting that *MLPK* could be a substrate of SRK.⁴⁰ However, a complementation experiment with the *MLPK* gene to demonstrate the function of *MLPK* has not been performed. Further analysis is required to confirm that *MLPK* functions in *Brassica* self-incompatibility signaling.

By using yeast two-hybrid approach with the SRK kinase domain as bait, *Arm* repeat-containing protein (*ARC1*) has been identified as a positive regulator of the SRK-mediated signaling cascade.⁴¹ *ARC1* is a plant U-Box E3 ubiquitin ligase, which functions to attach ubiquitin to target proteins. *ARC1* is predominantly expressed in the stigma, and *ARC1* is phosphorylated by SRK and *MLPK* *in vitro*.^{41,42} *ARC1* has been observed in both cytosol and nuclei when expressed in tobacco BY-2 cells, and it was relocated to the ER-localized proteasomes when *ARC1* and *SRK₉₁₀* were coexpressed.^{42,43} The

knockdown of the *ARC1* gene in a self-incompatible *B. napus* 'W1' line has been found to result in a partial breakdown of self-incompatibility phenotype,⁴⁴ suggesting that the *ARC1* gene is required for the *Brassica* self-incompatibility.

Further analysis by using yeast two-hybrid analysis with *ARC1* as bait has identified *Exo70A1* to be an interactor with *ARC1*.⁴⁵ *Exo70A1* was ubiquitinated by *ARC1* *in vitro*.⁴⁵ *Exo70A1* is a subunit of the exocyst complex, and mutation of the *A. thaliana* orthologous gene affected fertility.^{45,46} Knockdown of *EXO70A1* by RNAi in the stigma of self-compatible *B. napus* 'Westar' showed a reduced number of pollen grains on the stigma surface after pollination,⁴⁵ and, in contrast, expression of *Exo70A1* by *SLR1* promoter, which is a stigma specific promoter,⁴⁷ in the self-incompatible *B. napus* 'W1' line partially overcame self-incompatibility.⁴⁵ In addition, co-expression of the *SRK* and *ARC1* genes caused redistribution of *Exo70A1* from cytosol to ER-associated proteasomes in tobacco BY-2 cells.⁴⁵ In a current model, activated SRK (and *MLPK*) phosphorylates *ARC1*, and then the phosphorylated *ARC1* ubiquitinates *Exo70A1* for proteasome-mediated degradation, resulting in inhibition of pollen germination in self-pollinated stigmas of self-incompatible *Brassica* plants (Figure 1).

THE OTHER SRK INTERACTORS IN *BRASSICA*


By using yeast two-hybrid screening with the SRK kinase domain as bait, *Thioredoxin H-Like* proteins (THL1 and THL2) have been identified as interactors of SRK.⁴⁸ THL1/2-SRK interaction was mediated by a cysteine residue at a transmembrane domain of SRK protein.⁴⁹ *In vitro* analysis suggested that the addition of recombinant THL1/2 proteins inhibited autophosphorylation activity of SRK, and that this inhibition was suppressed by a pollen coat fraction of the same *S* haplotype.⁵⁰ Suppression of *THL1/2* gene expression in self-compatible *B. napus* 'Westar', which has functional SRK that is identical to *B. oleracea* *SRK₁₅*,⁵¹ showed spontaneous inhibition of pollen germination and pollen tube elongation.⁵¹ These results suggest that THL1/2 proteins function as inhibitors of SRK-mediated signaling in *Brassica* plants.

In addition to the *ARC1* and *THL1/2* proteins, kinase-associated protein phosphatase (KAPP), sorting nexin 1 and calmodulin have been identified as SRK interactors.⁵² Yeast two-hybrid experiments have shown that KAPP interacted with the SRK kinase domain.⁵² *In vitro* experiments have revealed that SRK phosphorylated KAPP and KAPP dephosphorylated SRK,⁵² suggesting that KAPP might function in attenuation of SRK signaling. Calmodulin has been identified by yeast two-hybrid analysis with the kinase domain of a kinase-dead mutant of SRK as the bait, and interacted with SRK in a Ca^{2+} -dependent manner.⁵² Sorting nexin 1 has also been found to interact with the kinase-dead mutant.⁵² However, the necessity and role of these proteins in self-incompatibility remain unclear.

SELF-INCOMPATIBILITY SIGNALING PATHWAY IN *ARABIDOPSIS*

Although *A. thaliana* is a self-compatible plant, self-incompatible transgenic *A. thaliana* plants have been successfully constructed by introducing the *SRK-SCR* genes of closely related species, such as *A. lyrata*, *A. halleri* and *C. gradiflora*, into *A. thaliana*.^{20,22-26} These results indicate that *A. thaliana* has all the molecular components required for self-incompatibility signaling other than SRK and/or SCR. Because of a highly efficient and easy transformation protocol of *A. thaliana* and many genetic resources, the transgenic *A. thaliana* plants enable *in planta* evaluation of the molecular components in the self-incompatibility mechanism that were identified in *Brassica* plants.

The *A. thaliana* *APK1b* gene (*At2g28930*) shows the highest similarity to the *B. rapa* *MLPK* gene. Like the *MLPK* gene, *APK1b* produced two transcripts from two distinct initiation sites.^{39,53} In addition, the *B. rapa* chromosomal region containing *MLPK* shows the highest synteny with an *A. thaliana* chromosomal region con-

Figure 1. A current model of the self-incompatibility signaling cascade in *Brassica*.

taining *APK1b*.⁵³ The transgenic *SRKb-SCRb* *A. thaliana* carrying the T-DNA insertion mutation in *APK1b* (SALK_055314), which is a null mutation,^{39,54} showed a self-incompatibility response toward self pollen, indicating that the *apk1b* mutation did not affect the self-incompatibility response in transgenic *SRKb-SCRb* *A. thaliana* plants.⁵³ Recently, it has been reported that an *apk1b* mutation in *A. thaliana* affected stomatal conductance.⁵⁵ These reports suggest that *APK1b* does not function in the self-incompatibility signaling, but functions in another signaling cascade.

The *B. rapa* genome contains three putative orthologous genes of *A. thaliana* *APK1b*, i.e., *MLPK* (*Bra000478*), *Bra035659* and *Bra040929*, because of an extra genome triplication in *Brassica* species. Although the *B. rapa* genomic region containing the *MLPK* gene shows the highest similarity to that containing *APK1b*, synteny analysis using the *A. thaliana* genomic region containing *APK1b* as a query revealed that the *Brassica* genomic region containing *Bra035659* has the highest synteny among the three genomic regions of *Brassica*, indicating that *Bra035659* is the orthologous gene of *APK1b* and *A. thaliana* does not contain an orthologous gene of *Brassica* *MLPK*. These observations may suggest that, if *MLPK* is required for the self-incompatibility signaling in *Brassica* plants, the *MLPK* gene would have appeared as a positive regulator of self-incompatibility signaling after species differentiation between *Brassica* and *Arabidopsis*.

A survey of the *A. thaliana* genome revealed that *A. thaliana* does not have an orthologous gene of the *Brassica* *ARC1* gene.^{53,56} In contrast to *A. thaliana*, *A. lyrata*, which is a self-incompatible *Arabidopsis* species, has an ortholog of *ARC1*.⁵⁶ Knockdown of the *ARC1* gene in the *A. lyrata* stigmas has been reported to cause partial breakdown of the self-incompatibility response.⁵⁶ In addition, the *A. lyrata* *ARC1* and *B. rapa* *ARC1* genes have been found to confer strong self-incompatibility phenotype to *SRKb-SCRb* transgenic *A. thaliana* Col-0,⁵⁷ which shows a transient self-incompatibility phenotype, suggesting that *ARC1* plays an important role in *Arabidopsis* self-incompatibility signaling. However, *SRKb-SCRb* transgenic *A. thaliana* C24 plants show a strong self-incompatibility response, although the *ARC1* gene is not found in the *A. thaliana* C24 genome nor in the *A. thaliana* Col-0 genome.⁵⁶

A. thaliana has an orthologous gene (*At5g03540*) of *Brassica* *EXO70A1* encoding *Exo70A1*,⁵³ which has been identified as a putative substrate of *ARC1* in *Brassica*.⁴⁵ Unlike self-incompatible *B. napus* 'W1' plants, overexpression of *EXO70A1* in *SRKb-SCRb* transgenic *A. thaliana* was not found to affect the self-incompatibility response.⁵³ This result suggests that *Exo70A1* has no effect on self incompatibility in *A. thaliana*. In contrast to the result of Samuel

et al.,⁴⁵ Li et al.⁴⁶ have recently reported that *A. thaliana* *exo70a1* mutant did not show defects in pollen germination and pollen tube elongation, when hand-pollinated, supporting the conclusion of Kitashiba et al.⁵³ However, to answer the discrepancy between the result of Samuel et al.⁴⁵ and Li et al.,⁴⁶ Safavian et al. have reported that the pollination defect in the *A. thaliana* *exo70a1* mutant was observed at 40% humidity, but the defect was rescued at 80% humidity, suggesting that the pollination defect of the *A. thaliana* *exo70a1* mutant was humidity-dependent.⁵⁸ To conclude whether *Exo70A1* functions in self-incompatibility, further studies are required on degradation of *EXO70A1* in self-pollinated stigmas of self-incompatible plants and effect of high humidity, such as 80% humidity, on *Brassica* self-incompatibility response.

THL1/2 were identified as negative regulators of *SRK*-mediated self-incompatibility signaling.^{50,51} The effect of *THL* proteins on self-incompatibility was examined by using *A. thaliana* T-DNA insertion mutants of the *AtTRX3* and *AtTRX4* gene, which are orthologous genes of *Brassica* *THL1* and *THL2*, respectively.⁵⁹ Unlike the *THL1/2* genes, the *attrx3*, *attrx4* and *attrx3attrx4* mutations did not affect the *A. thaliana* self-incompatibility response.⁵⁹ The effect of thioredoxin H-SRK interaction on self-incompatibility was also examined by using a transgenic *A. thaliana* plant expressing an *SRKb* (C463W) mutant gene, which has a mutation at the Cys463 residue that corresponds to the Cys residue required for the thioredoxin H-SRK interaction.⁴⁹ The phenotype of the transgenic *A. thaliana* plants expressing the *SRKb* (C463W) mutant gene was indistinguishable from that of *SRKb* transgenic *A. thaliana* plants under both self- and cross-pollination, indicating that the replacement of the Cys residue does not affect the self-incompatibility response in transgenic *A. thaliana*.⁵⁹ In addition, the fact that the Cys residue is not conserved among some *SRK* haplotypes of not only *Arabidopsis* but also *Brassica* plants, such as *A. lyrata* *SRK_a* and *SRK₃*, *A. halleri* *SRK₃* and *B. oleracea* *SRK₆₈*.⁵⁹

PERSPECTIVES

After identification of the *SRK* gene in *Brassica*, subsequent research has presented several candidates as possible components of self-incompatibility signaling in *Brassica*. *In vitro* experimental results have provided an interesting model of a signaling cascade in self-incompatibility in *Brassica* (Figure 1). However, because of the difficulty of transformation and gene targeting disruption in self-incompatible *Brassica* plants, the constructed model for self-incompatibility has not been confirmed by *in planta* experiments using gene-knockout self-incompatible mutant plants.

Because the gene targeting deletion method of non-model organisms including *Brassica* has not been developed, it has been difficult to examine the necessity and roles of the identified candidates in self-incompatibility mechanism in *Brassica*. However, recently, new genome editing methods, such as TALEN and CRISPR/Cas,⁶⁰ have been developed. The development of these methods should enable us to construct null mutants of non-model self-incompatible plants to examine the effects of the candidate genes on self-incompatibility signaling. In turn, molecular components that function in *Arabidopsis* self-incompatibility signaling have not been identified. Therefore, identification of the molecular components in *Arabidopsis* self-incompatibility is also required. In conclusion, *in planta* evaluation of candidate genes in the *Brassica* self-incompatibility signaling and the identification of molecular components of the *Arabidopsis* self-incompatibility signaling contribute to the knowledge of not only the molecular mechanism of self-incompatibility, but also evolutionary aspects of the self-incompatibility mechanism in Brassicaceae.

COMPETING INTERESTS

The authors declare no conflict of interest.

REFERENCES

- Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of *Brassica oleracea*. *Proc Natl Acad Sci USA* 1991; **88**: 8816–8820.
- Schopfer CR, Nasrallah ME, Nasrallah JB. The male determinant of self-incompatibility in *Brassica*. *Science* 1999; **286**: 1697–1700.
- Suzuki G, Kai N, Hirose T et al. Genomic organization of the *S* locus: Identification and characterization of genes in *SLG/SRK* region of *S⁹* haplotype of *Brassica campestris* (syn. *rapa*). *Genetics* 1999; **153**: 391–400.
- Nasrallah JB, Nasrallah ME. Pollen-stigma signaling in the sporophytic self-incompatibility response. *Plant Cell* 1993; **5**: 1325–1335.
- Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The *S* receptor kinase determines self-incompatibility in *Brassica* stigma. *Nature* 2000; **403**: 913–916.
- Chen CH, Nasrallah JB. A new class of *S* sequences defined by a pollen recessive self-incompatibility allele of *Brassica oleracea*. *Mol Gen Genet* 1990; **222**: 241–248.
- Sato K, Nishio T, Kimura R et al. Coevolution of the *S*-locus genes *SRK*, *SLG* and *SP11/SCR* in *Brassica oleracea* and *B. rapa*. *Genetics* 2002; **162**: 931–940.
- Iwano M, Shiba H, Funato M, Shimosato H, Takayama S, Isogai A. Immunohistochemical studies on translocation of pollen *S*-haplotype determinant in self-incompatibility of *Brassica rapa*. *Plant Cell Physiol* 2003; **44**: 428–436.
- Kachroo A, Schopfer CR, Nasrallah ME, Nasrallah JB. Allele-specific receptor-ligand interactions in *Brassica* self-incompatibility. *Science* 2001; **293**: 1824–1826.
- Takayama S, Shimosato H, Shiba H et al. Direct ligand-receptor complex interaction controls *Brassica* self-incompatibility. *Nature* 2001; **413**: 534–538.
- Schopfer CR, Nasrallah JB. Self-incompatibility: Prospects for a novel putative peptide-signaling molecule. *Plant Physiol* 2000; **124**: 935–940.
- Watanabe M, Ito A, Takada Y et al. Highly divergent sequences of the pollen self-incompatibility (*S*) gene in class-I *S* haplotypes of *Brassica campestris* (syn. *rapa*) L. *FEBS Lett* 2000; **473**: 139–144.
- Okamoto S, Sato Y, Sakamoto K, Nishio T. Distribution of similar self-incompatibility (*S*) haplotypes in different genera, *Raphanus* and *Brassica*. *Sex Plant Reprod* 2004; **17**: 33–39.
- Mishima M, Takayama S, Sasaki KI et al. Structure of the male determinant factor for *Brassica* self-incompatibility. *J Biol Chem* 2003; **278**: 36389–36395.
- Chookajorn T, Kachroo A, Ripoll DR, Clark AG, Nasrallah JB. Specificity determinants and diversification of the *Brassica* self-incompatibility pollen ligand. *Proc Natl Acad Sci USA* 2004; **101**: 911–917.
- Kusaba M, Dwyer K, Hendershot J, Vrebalov J, Nasrallah JB, Nasrallah ME. Self-incompatibility in the genus *Arabidopsis*: characterization of the *S* locus in the outcrossing *A. lyrata* and its autogamous relative *A. thaliana*. *Plant Cell* 2001; **13**: 627–643.
- Sherman-Broyles S, Boggs NA, Farkas A et al. *S* locus genes and the evolution of self-fertility in *Arabidopsis thaliana*. *Plant Cell* 2007; **19**: 94–106.
- Tang C, Toomajian C, Sherman-Broyles S et al. The evolution of selfing in *Arabidopsis thaliana*. *Science* 2007; **317**: 1070–1072.
- Shimizu KK, Shimizu-Inatsugi R, Tsuchimatsu T, Purugganan MD. Independent origins of self-compatibility in *Arabidopsis thaliana*. *Mol Ecol* 2008; **17**: 704–714.
- Boggs NA, Nasrallah JB, Nasrallah ME. Independent *S*-locus mutations caused self-fertility in *Arabidopsis thaliana*. *PLoS Genet* 2009; **5**: e1000426.
- Dwyer KG, Berger MT, Ahmed R et al. Molecular characterization and evolution of self-incompatibility genes in *Arabidopsis thaliana*: the case of the *Sc* haplotype. *Genetics* 2013; **193**: 985–994.
- Nasrallah ME, Liu P, Nasrallah JB. Generation of self-incompatible *Arabidopsis thaliana* by transfer of two *S* locus genes from *A. lyrata*. *Science* 2002; **297**: 247–249.
- Nasrallah ME, Liu P, Sherman-Broyles S, Boggs NA, Nasrallah JB. Natural variation in expression of self-incompatibility in *Arabidopsis thaliana*: Implications for the evolution of selfing. *Proc Natl Acad Sci USA* 2004; **101**: 16070–16074.
- Liu P, Sherman-Broyles S, Nasrallah ME, Nasrallah JB. A cryptic modifier causing transient self-incompatibility in *Arabidopsis thaliana*. *Curr Biol* 2007; **17**: 734–740.
- Boggs NA, Dwyer KG, Shah P et al. Expression of distinct self-incompatibility specificities in *Arabidopsis thaliana*. *Genetics* 2009; **182**: 1313–1321.
- Tsuchimatsu T, Suwabe K, Shimizu-Inatsugi R et al. Evolution of self-compatibility in *Arabidopsis* by a mutation in the male specificity gene. *Nature* 2010; **464**: 1342–1346.
- Warwick SI, Francis A, Al-Shehbaz IA. Brassicaceae: species checklist and database on CD-Rom. *Plant Syst Evol* 2006; **259**: 249–258.
- Warwick SI, Mummenhoff K, Sauder CA, Koch MA, Al-Shehbaz IA. Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. *Plant Syst Evol* 2010; **285**: 209–232.
- Al-Shehbaz IA, Beilstein MA, Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. *Plant Syst Evol* 2006; **259**: 89–120.
- Bailey CD, Koch MA, Mayer M et al. Toward a global phylogeny of the Brassicaceae. *Mol Biol Evol* 2006; **23**: 2142–2160.
- Beilstein MA, Al-Shehbaz IA, Kellogg EA. Brassicaceae phylogeny and trichome evolution. *Am J Bot* 2006; **93**: 607–619.
- Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA. Brassicaceae phylogeny inferred from phytochrome A and *NDHF* sequence data: tribes and trichomes revisited. *Am J Bot* 2008; **95**: 1307–1327.
- Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. Cabbage family affairs: the evolutionary history of Brassicaceae. *Trends Plant Sci* 2011; **16**: 108–116.
- Bi YM, Brugière N, Cui Y, Goring DR, Rothstein SJ. Transformation of *Arabidopsis* with a *Brassica* *SLG/SRK* region and *ARC1* gene is not sufficient to transfer the self-incompatibility phenotype. *Mol Gen Genet* 2000; **263**: 648–654.
- Suzuki T, Kusaba M, Matsushita M, Okazaki K, Nishio T. Characterization of *Brassica* *S*-haplotypes lacking *S*-locus glycoprotein. *FEBS Lett* 2000; **482**: 102–108.
- Fujimoto R, Sugimura T, Nishio T. Gene conversion from *SLG* to *SRK* resulting in self-compatibility in *Brassica rapa*. *FEBS Lett* 2006; **580**: 425–430.
- Guo YL, Zhao X, Lanz C, Weigel D. Evolution of the *S*-locus region in *Arabidopsis* relatives. *Plant Physiol* 2011; **157**: 937–946.
- Murase K, Shiba H, Iwano M et al. A membrane-anchored protein kinase involved in *Brassica* self-incompatibility signaling. *Science* 2004; **303**: 1516–1519.
- Kakita M, Murase K, Iwano M et al. Two distinct forms of *M*-locus protein kinase localize to the plasma membrane and interact directly with *S*-locus receptor kinase to transduce self-incompatibility signaling in *Brassica rapa*. *Plant Cell* 2007; **19**: 3961–3973.
- Kakita M, Shimosato H, Murase K, Isogai A, Takayama S. Direct interaction between *S*-locus receptor kinase and *M*-locus protein kinase involved in *Brassica* self-incompatibility signaling. *Plant Biotechnology* 2007; **24**: 185–190.
- Gu T, Mazzurco M, Sulaman W, Matias DD, Goring DR. Binding of an arm repeat protein to the kinase domain of the *S*-locus receptor kinase. *Proc Natl Acad Sci USA* 1998; **95**: 382–387.
- Samuel MA, Mudgil Y, Salt JN et al. Interactions between the *S*-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in *Arabidopsis*. *Plant Physiol* 2008; **147**: 2084–2095.
- Stone SL, Anderson EM, Mullen RT, Goring DR. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible *Brassica* pollen. *Plant Cell* 2003; **15**: 885–898.
- Stone SL, Arnoldo M, Goring DR. A breakdown of *Brassica* self-incompatibility in ARC1 antisense transgenic plants. *Science* 1999; **286**: 1729–1731.
- Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR. Cellular pathways regulating responses to compatible and self-incompatible pollen in *Brassica* and *Arabidopsis* stigmas intersect at Exo70A1, a putative component of the exocyst complex. *Plant Cell* 2009; **21**: 2655–2671.
- Li S, Chen M, Yu D et al. EXO70A1-mediated vesicle trafficking is critical for tracheary element development in *Arabidopsis*. *Plant Cell* 2013; **25**: 1774–1786.
- Franklin TM, Centre JL. SLR1 function is dispensable for both self-incompatible rejection and self-compatible pollination processes in *Brassica*. *Sex Plant Reprod* 1996; **9**: 203–208.
- Bower MS, Matias DD, Fernandes-Carvalho E et al. Two members of the thioredoxin-h family interact with the kinase domain of a *Brassica* *S* locus receptor kinase. *Plant Cell* 1996; **8**: 1641–1650.

49 Mazzurco M, Sulaman W, Elina H, Cock JM, Goring DR. Further analysis of the interactions between the *Brassica* S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. *Plant Mol Biol* 2001; **45**: 365–376.

50 Cabrillac D, Cock JM, Dumas C, Gaude T. The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. *Nature* 2001; **410**: 220–223.

51 Haffani YZ, Gaude T, Cock JM, Goring DR. Antisense suppression of thioredoxin h mRNA in *Brassica napus* cv. Westar pistils causes a low level constitutive pollen rejection response. *Plant Mol Biol* 2004; **55**: 619–630.

52 Vanoosthuysse V, Tichtinsky G, Dumas C et al. Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the *Brassica oleracea* S locus receptor kinase. *Plant Physiol* 2003; **133**: 919–929.

53 Kitashiba H, Liu P, Nishio T, Nasrallah JB, Nasrallah ME. Functional test of *Brassica* self-incompatibility modifiers in *Arabidopsis thaliana*. *Proc Natl Acad Sci USA* 2011; **108**: 18173–18178.

54 Rea AC, Liu P, Nasrallah JB. A transgenic self-incompatible *Arabidopsis thaliana* model for evolutionary and mechanistic studies of crucifer self-incompatibility. *J Exp Bot* 2010; **61**: 1897–1906.

55 Elhaddad NS, Hunt L, Sloan J, Gray JE. Light-induced stomatal opening is affected by the guard cell protein kinase APK1b. *PLoS One* 2014; **9**: e97161.

56 Indriolo E, Tharmapalan P, Wright SI, Goring DR. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in *Arabidopsis lyrata* self-pollen rejection. *Plant Cell* 2012; **24**: 4607–4620.

57 Indriolo E, Safavian D, Goring DR. The ARC1 E3 ligase promotes two different self-pollen avoidance traits in *Arabidopsis*. *Plant Cell* 2014; **26**: 1525–1543.

58 Safavian D, Jamshed M, Sankaranarayanan S, Indriolo E, Samuel MA, Goring DR. High humidity partially rescues the *Arabidopsis thaliana* exo70A1 stigmatic defect for accepting compatible pollen. *Plant Reprod* 2014; **27**: 121–127.

59 Yamamoto M, Nasrallah JB. In planta assessment of the role of thioredoxin h proteins in the regulation of S-locus receptor kinase signaling in transgenic *Arabidopsis thaliana*. *Plant Physiol* 2013; **163**: 1387–1395.

60 Kim H, Kim JS. A guide to genome engineering with programmable nucleases. *Nat Rev Genet* 2014; **15**: 321–334.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit <http://creativecommons.org/licenses/by-nc-nd/3.0/>