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Commonalities and differences between Brassica and

Arabidopsis self-incompatibility
Masaya Yamamoto and Takeshi Nishio

In higher plants, the self-incompatibility mechanism is important for inhibition of self-fertilization and facilitation of out-crossing. In
Brassicaceae, the self-incompatibility response is mediated by allele-specific interaction of the stigma-localized S-locus receptor kinase
(SRK) with the pollen coat-localized ligand (SCR/SP11). All self-incompatible Brassicaceae plants analyzed have been found to have the
SRK and SCR/SP11 genes in the S-locus region. Although Arabidopsis thaliana is self-compatible, transformation with functional SRK-SCR
genes from self-incompatible Arabidopsis species confers the self-incompatibility phenotype to A. thaliana. The allele-specific
interaction between SRK and SCR activates the downstream signaling cascade of self-incompatibility. Yeast two-hybrid analysis with a
kinase domain of SRK as bait and genetic analysis suggested several candidate components of self-incompatibility signaling in
Brassica. Recently, A. thaliana genes orthologous to the identified genes for Brassica self-incompatibility signaling were evaluated by
using a self-incompatible transgenic A. thaliana plant and these orthologous genes were found not to be involved in
self-incompatibility signaling in the transgenic A. thaliana. In this review, we describe common and different aspects of S-locus
genomic regions and self-incompatibility signaling between Brassica and Arabidopsis.
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INTRODUCTION
Higher plants have a self-incompatibility mechanism for preventing
self-fertilization and facilitating out-crossing. Self-incompatibility is
considered to contribute to the maintenance of genetic diversity
and avoidance of inbreeding depression. The Brassicaceae self-
incompatibility system is well studied. Recognition specificity of this
self-incompatibility system is determined by a diploid genotype of a
parent plant. In self-pollination, pollen germination and pollen tube
penetration of the cell wall of stigma papillar cells are inhibited.

Self-incompatibility is generally controlled by a single locus, the S
locus. In Brassicaceae, the S-locus receptor kinase (SRK) and S-locus
cysteine rich protein/S-locus protein 11 (SCR/SP11) genes, which
encode highly polymorphic proteins as female and male determi-
nants of recognition specificity, respectively, have been found at
the S locus.1–3 Because these two genes are tightly linked with each
other and inherited as a single Mendelian locus, a set of alleles of the
S-locus genes is referred to as S haplotype.4 The SRK gene is
expressed in the stigma papillar cells and encodes a plasma mem-
brane-localized receptor kinase, which has a highly polymorphic
extracellular receptor domain (S domain, hereafter) followed by a
transmembrane domain and a serine/threonine kinase domain.1,5

Some variants of SRK exhibit more than 30% amino-acid sequence
divergence in the S domain.6,7 SCR/SP11 (SCR hereafter) is expres-
sed in anthers and its translational products are secreted to the
pollen coat.8 SCR is a small peptide, ,60 amino acids of mature
form, and functions as the ligand for SRK.2,9,10 SCR is also highly
polymorphic and less than 50% amino-acid sequence similarity is
shared between S haplotypes.2,7,11–13 Although they have high
sequence diversity, all SCR proteins appear to form a typical defen-
sin-like 3D structure consisting of three b-sheets and one a-
helix.14,15 In self-pollination, stigma-localized SRK interacts with
SCR of the same S haplotype located on the pollen surface
and activates a self-incompatibility signaling cascade, resulting in

inhibition of self-pollen germination and tube penetration of the
stigma papillar cell wall.

Arabidopsis thaliana, which is a model plant belonging to the
family Brassicaceae, had not been used for studies of self-incom-
patibility mechanism because A. thaliana is a self-compatible spe-
cies due to lack of functional SRK and/or SCR.16–21 However,
transformation with functional SRK-SCR genes from self-incom-
patible Arabidopsis and closely related species, such as
Arabidopsis lyrata, Arabidopsis halleri and Capsella gradiflora, confers
self-incompatibility phenotype to A. thaliana,20,22–26 indicating that
A. thaliana has the molecular components that are required for self-
incompatibility signaling and can be used for studies of the
Brassicaceae self-incompatibility mechanism.

The plant family Brassicaceae contains 338 genera and 3709 spe-
cies, 308 of the 338 genera being assigned to 44 tribes.27,28 These
tribes are grouped into three major linages.29–32 Arabidopsis and
Brassica belong to lineage I and II, respectively,33 and these two genera
were separated approximately 15 million years ago. Whole genome
duplication or triplication has occurred only in the Brassica lineage but
not in Arabidopsis since their separation. These observations suggest
that Brassica and Arabidopsis would have different genetic back-
grounds, although both self-incompatible plants of these two genera
possess the SRK and SCR genes for recognition specificity of self-
incompatibility. In this mini-review, we describe the molecular com-
ponents functioning in SRK-mediated self-incompatibility signaling in
Brassica and in planta evaluation results of these identified molecular
components by using self-incompatible transgenic A. thaliana. We also
discuss common and different aspects of self-incompatibility between
Brassica and Arabidopsis.

THE S-LOCUS IN BRASSICA AND ARABIDOPSIS
Although introduction of Arabidopsis SRK-SCR genes confers the
self-incompatibility response to A. thaliana,20,22–26 construction of
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self-incompatible transgenic A. thaliana plants by introduction of
the Brassica SRK-SCR gene pair has not succeeded.34 One possible
explanation for this failure is that Brassica SRK and/or SCR are too
greatly differentiated to function in Arabidopsis.

Molecular genetic studies have elucidated an interesting differ-
ence of the S-locus regions between Brassica and Arabidopsis. In
Brassica, three genes are generally found in the S locus. In addition
to the SRK and SCR genes, the S-locus glycoprotein (SLG) gene is
located at the S locus. The SLG gene encodes a stigma soluble
glycoprotein showing high similarity to the S-domain of SRK. Like
SRK, SLG is a highly polymorphic protein between S haplotypes. The
role of SLG in self-incompatibility remains unclear. Because some S
haplotypes lack the functional SLG gene at the S locus,35 the SLG
gene is not considered to be an essential component in the self-
incompatibility in Brassica. The S domain of SRK of a self-compatible
Brassica rapa S-54 mutant has been found to be 100% identical to
the S-54 SLG gene,36 suggesting that gene conversion between SRK
S domain and SLG occurred, although this gene conversion caused
the loss of the SRK function. This observation indicates one possible
role of SLG in self-incompatibility, namely that the SLG gene con-
tributes to production of a new SRK allele by gene conversion.

The SLG gene has not been found at the S locus of any A. lyrata S
haplotypes. Instead of the SLG gene, the ARK3 gene, which is closely
related to the SRK gene and contains the S domain, transmembrane
domain and kinase domain, is located at the A. lyrata S locus. The
ARK3 gene, as well as SRK and SCR, has been affected by positive
selection.37 In addition, gene conversion between SRK and ARK3
was detected as observed in the Brassica S locus. This gene conver-
sion occurred in the region of the kinase domain,37 and possibly
functioned to promote SRK evolution to produce new substrate
specificity.

POSITIVE REGULATORS IN THE SELF-INCOMPATIBILITY
SIGNALING PATHWAY IN BRASSICA
M-locus protein kinase (MLPK) has been identified in self-incom-
patible B. rapa plants as a positive regulator of Brassica self-incom-
patibility.38 MLPK is a protein kinase and a self-compatible mlpk
mutant of B. rapa has a G194R mutation in its kinase domain.38 In
vitro kinase assay has shown that MLPK has autophosphorylation
activity, whereas MLPK protein of the self-compatible mlpk mutant
has no activity.38 The MLPK gene produces two alternative tran-
scripts (MLPKf1 and MLPKf2) from distinct transcription initiation
sites.39 MLPKf1 and MLPKf2 produce proteins of 404 and 410 amino
acids, respectively, and only their N-terminus sequences are differ-
ent between them.39 MLPKf2 transcripts are more abundant than
MLPKf1 transcripts in the stigma.39 Both MLPK forms have an N-
myristoylation motif, which functions as a plasma membrane tar-
geting motif.38,39 Bimolecular fluorescence complementation assay
has indicated that MLPK interacts with SRK at the plasma mem-
brane and that this interaction is independent of the SCR peptide,
suggesting that MLPK might form hetero-oligomers with SRK on
the plasma membrane.39 In addition, in vitro kinase assay has
revealed that MLPK is phosphorylated by SRK, suggesting that
MLPK could be a substrate of SRK.40 However, a complementation
experiment with the MLPK gene to demonstrate the function of
MLPK has not been performed. Further analysis is required to con-
firm that MLPK functions in Brassica self-incompatibility signaling.

By using yeast two-hybrid approach with the SRK kinase domain
as bait, Arm repeat-containing protein (ARC1) has been identified as
a positive regulator of the SRK-mediated signaling cascade.41 ARC1
is a plant U-Box E3 ubiquitin ligase, which functions to attach ubi-
quitin to target proteins. ARC1 is predominantly expressed in the
stigma, and ARC1 is phosphorylated by SRK and MLPK in vitro.41,42

ARC1 has been observed in both cytosol and nuclei when expressed
in tobacco BY-2 cells, and it was relocated to the ER-localized
proteasomes when ARC1 and SRK910 were coexpressed.42,43 The

knockdown of the ARC1 gene in a self-incompatible B. napus ‘W1’
line has been found to result in a partial breakdown of self-incom-
patibility phenotype,44 suggesting that the ARC1 gene is required
for the Brassica self-incompatibility.

Further analysis by using yeast two-hybrid analysis with ARC1 as
bait has identified Exo70A1 to be an interactor with ARC1.45

Exo70A1 was ubiquitinated by ARC1 in vitro.45 Exo70A1 is a subunit
of the exocyst complex, and mutation of the A. thaliana ortholo-
gous gene affected fertility.45,46 Knockdown of EXO70A1 by RNAi in
the stigma of self-compatible B. napus ‘Westar’ showed a reduced
number of pollen grains on the stigma surface after pollination,45

and, in contrast, expression of Exo70A1 by SLR1 promoter, which is a
stigma specific promoter,47 in the self-incompatible B. napus ‘W1’
line partially overcame self-incompatibility.45 In addition, co-
expression of the SRK and ARC1 genes caused redistribution of
Exo70A1 from cytosol to ER-associated proteasomes in tobacco
BY-2 cells.45 In a current model, activated SRK (and MLPK) phos-
phorylates ARC1, and then the phosphorylated ARC1 ubiquitinates
Exo70A1 for proteasome-mediated degradation, resulting in inhibi-
tion of pollen germination in self-pollinated stigmas of self-incom-
patible Brassica plants (Figure 1).

THE OTHER SRK INTERACTORS IN BRASSICA
By using yeast two-hybrid screening with the SRK kinase domain as
bait, Thioredoxin H-Like proteins (THL1 and THL2) have been iden-
tified as interactors of SRK.48 THL1/2-SRK interaction was mediated
by a cysteine residue at a transmembrane domain of SRK protein.49

In vitro analysis suggested that the addition of recombinant THL1/2
proteins inhibited autophosphorylation activity of SRK, and that this
inhibition was suppressed by a pollen coat fraction of the same S
haplotype.50 Suppression of THL1/2 gene expression in self-com-
patible B. napus ‘Westar’, which has functional SRK that is identical
to B. oleracea SRK15,51 showed spontaneous inhibition of pollen
germination and pollen tube elongation.51 These results suggest
that THL1/2 proteins function as inhibitors of SRK-mediated signal-
ing in Brassica plants.

In addition to the ARC1 and THL1/2 proteins, kinase-associated
protein phosphatase (KAPP), sorting nexin 1 and calmodulin have
been identified as SRK interactors.52 Yeast two-hybrid experiments
have shown that KAPP interacted with the SRK kinase domain.52 In
vitro experiments have revealed that SRK phosphorylated KAPP and
KAPP dephosphorylated SRK,52 suggesting that KAPP might func-
tion in attenuation of SRK signaling. Calmodulin has been identified
by yeast two-hybrid analysis with the kinase domain of a kinase-
dead mutant of SRK as the bait, and interacted with SRK in a Ca21-
dependent manner.52 Sorting nexin 1 has also been also found to
interact with the kinase-dead mutant.52 However, the necessity and
role of these proteins in self-incompatibility remain unclear.

SELF-INCOMPATIBILITY SIGNALING PATHWAY IN ARABIDOPSIS
Although A. thaliana is a self-compatible plant, self-incompatible
transgenic A. thaliana plants have been successfully constructed by
introducing the SRK-SCR genes of closely related species, such as A.
lyrata, A. halleri and C. gradiflora, into A. thaliana.20,22–26 These
results indicate that A. thaliana has all the molecular components
required for self-incompatibility signaling other than SRK and/or
SCR. Because of a highly efficient and easy transformation protocol
of A. thaliana and many genetic resources, the transgenic A. thali-
ana plants enable in planta evaluation of the molecular compo-
nents in the self-incompatibility mechanism that were identified
in Brassica plants.

The A. thaliana APK1b gene (At2g28930) shows the highest sim-
ilarity to the B. rapa MLPK gene. Like the MLPK gene, APK1b pro-
duced two transcripts from two distinct initiation sites.39,53 In
addition, the B. rapa chromosomal region containing MLPK shows
the highest synteny with an A. thaliana chromosomal region con-
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taining APK1b.53 The transgenic SRKb-SCRb A. thaliana carrying the
T-DNA insertion mutation in APK1b (SALK_055314), which is a null
mutation,39,54 showed a self-incompatibility response toward self
pollen, indicating that the apk1b mutation did not affect the self-
incompatibility response in transgenic SRKb-SCRb A. thaliana
plants.53 Recently, it has been reported that an apk1b mutation in
A. thaliana affected stomatal conductance.55 These reports suggest
that APK1b does not function in the self-incompatibility signaling,
but functions in another signaling cascade.

The B. rapa genome contains three putative orthologous genes
of A. thaliana APK1b, i.e., MLPK (Bra000478), Bra035659 and
Bra040929, because of an extra genome triplication in Brassica spe-
cies. Although the B. rapa genomic region containing the MLPK
gene shows the highest similarity to that containing APK1b, synteny
analysis using the A. thaliana genomic region containing APK1b as a
query revealed that the Brassica genomic region containing
Bra035659 has the highest synteny among the three genomic
regions of Brassica, indicating that Bra035659 is the orthologous
gene of APK1b and A. thaliana does not contain an orthologous
gene of Brassica MLPK. These observations may suggest that, if
MLPK is required for the self-incompatibility signaling in Brassica
plants, the MLPK gene would have appeared as a positive regulator
of self-incompatibility signaling after species differentiation
between Brassica and Arabidopsis.

A survey of the A. thaliana genome revealed that A. thaliana does
not have an orthologous gene of the Brassica ARC1 gene.53,56 In
contrast to A. thaliana, A. lyrata, which is a self-incompatible
Arabidopsis species, has an ortholog of ARC1.56 Knockdown of the
ARC1 gene in the A. lyrata stigmas has been reported to cause
partial breakdown of the self-incompatibility response.56 In addi-
tion, the A. lyrata ARC1 and B. rapa ARC1 genes have been found to
confer strong self-incompatibility phenotype to SRKb-SCRb trans-
genic A. thaliana Col-0,57 which shows a transient self-incompatibil-
ity phenotype, suggesting that ARC1 plays an important role in
Arabidopsis self-incompatibility signaling. However, SRKb-SCRb
transgenic A. thaliana C24 plants show a strong self-incompatibility
response, although the ARC1 gene is not found in the A. thaliana
C24 genome nor in the A. thaliana Col-0 genome.56

A. thaliana has an orthologous gene (At5g03540) of Brassica
EXO70A1 encoding Exo70A1,53 which has been identified as a
putative substrate of ARC1 in Brassica.45 Unlike self-incompatible
B. napus ‘W1’ plants, overexpression of EXO70A1 in SRKb-SCRb trans-
genic A. thaliana was not found to affect the self-incompatibility
response.53 This result suggests that Exo70A1 has no effect on self
incompatibility in A. thaliana. In contrast to the result of Samuel

et al.,45 Li et al.46 have recently reported that A. thaliana exo70a1
mutant did not show defects in pollen germination and pollen tube
elongation, when hand-pollinated, supporting the conclusion of
Kitashiba et al.53 However, to answer the discrepancy between
the result of Samuel et al.45 and Li et al.,46 Safavian et al. have
reported that the pollination defect in the A. thaliana exo70a1
mutant was observed at 40% humidity, but the defect was rescued
at 80% humidity, suggesting that the pollination defect of the A.
thaliana exo70a1 mutant was humidity-dependent.58 To conclude
whether Exo70A1 functions in self-incompatibility, further studies
are required on degradation of EXO70A1 in self-pollinated stigmas
of self-incompatible plants and effect of high humidity, such as 80%
humidity, on Brassica self-incompatibility response.

THL1/2 were identified as negative regulators of SRK-mediated
self-incompatibility signaling.50,51 The effect of THL proteins on self-
incompatibility was examined by using A. thaliana T-DNA insertion
mutants of the AtTRX3 and AtTRX4 gene, which are orthologous
genes of Brassica THL1 and THL2, respectively.59 Unlike the THL1/2
genes, the attrx3, attrx4 and attrx3attrx4 mutations did not affect
the A. thaliana self-incompatibility response.59 The effect of thior-
edoxin H–SRK interaction on self-incompatibility was also exam-
ined by using a transgenic A. thaliana plant expressing an SRKb
(C463W) mutant gene, which has a mutation at the Cys463 residue
that corresponds to the Cys residue required for the thioredoxin H–
SRK interaction.49 The phenotype of the transgenic A. thaliana
plants expressing the SRKb (C463W) mutant gene was indistinguish-
able from that of SRKb transgenic A. thaliana plants under both self-
and cross-pollination, indicating that the replacement of the Cys
residue does not affect the self-incompatibility response in trans-
genic A. thaliana.59 In addition, the fact that the Cys residue is not
conserved among some SRK haplotypes of not only Arabidopsis but
also Brassica plants, such as A. lyrata SRKa and SRK3, A. halleri SRK3

and B. oleracea SRK68.59

PERSPECTIVES
After identification of the SRK gene in Brassica, subsequent research
has presented several candidates as possible components of self-
incompatibility signaling in Brassica. In vitro experimental results
have provided an interesting model of a signaling cascade in
self-incompatibility in Brassica (Figure 1). However, because of the
difficulty of transformation and gene targeting disruption in self-
incompatible Brassica plants, the constructed model for self-incom-
patibility has not been confirmed by in planta experiments using
gene-knockout self-incompatible mutant plants.

Figure 1. A current model of the self-incompatibility signaling cascade in Brassica.
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Because the gene targeting deletion method of non-model
organisms including Brassica has not been developed, it has been
difficult to examine the necessity and roles of the identified candi-
dates in self-incompatibility mechanism in Brassica. However,
recently, new genome editing methods, such as TALEN and
CRISPR/Cas,60 have been developed. The development of these
methods should enable us to construct null mutants of non-model
self-incompatible plants to examine the effects of the candidate
genes on self-incompatibility signaling. In turn, molecular compo-
nents that function in Arabidopsis self-incompatibility signaling
have not been identified. Therefore, identification of the molecular
components in Arabidopsis self-incompatibility is also required. In
conclusion, in planta evaluation of candidate genes in the Brassica
self-incompatibility signaling and the identification of molecular
components of the Arabidopsis self-incompatibility signaling con-
tribute to the knowledge of not only the molecular mechanism of
self-incompatibility, but also evolutionary aspects of the self-incom-
patibility mechanism in Brassicaceae.
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