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Chronic traumatic encephalopathy: A paradigm in search
of evidence?
Rudy J Castellani

Chronic traumatic encephalopathy (CTE) has been in the medical literature since the 1920s. It is characterized clinically by
diverse neuropsychiatric symptoms, and pathologically by variable degrees of phosphorylated tau accumulation in the
brain. The evolving paradigm for the pathogenesis of CTE suggests that concussion or subconcussion from athletic
participation initiates a cascade of pathologic events, encompassing neuroinflammation and protein templating with
trans-synaptic neurotoxicity. The end result is neurologic and neurobehavioral deterioration, often with self-harm.
Although these concepts warrant further investigation, the available evidence permits no conclusions as regards the
pathogenesis of the reported findings. Investigations into the role of premorbid or co-morbid neurodegenerative diseases
has been limited to date, and in-depth genetic analyses have not been performed. The role of concussion or
subconcussion if any, whether and how the condition progresses over time, the extent of phosphorylated tau in clinically
normal athletes, the role of phosphorylated tau as a toxic species versus an inert disease response, and whether protein
templating has any in vivo relevance remain to be elucidated.
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Chronic traumatic encephalopathy (CTE) is the accepted
term for a pattern of phosphorylated tau (ptau) deposition in
the brain that appears to differ from age-related accumula-
tions and neurodegeneration.1 According to data from the
largest CTE series to date, ptau tends to occur as localized
accumulations in depths of sulci and perivascular areas of the
cerebral cortex, particularly frontal, temporal, and insular
cortices. CTE further tends to involve cortical laminae 2 and
3, relative to AD and aging where ptau predominates in
laminae 3 and 5. Extensive medial temporal lobe involvement,
and involvement of the brainstem tegmentum, may also be
present. Axonal varicosities in the deep cortex and subcortical
white matter are variously described. The gross brain varies
from markedly atrophic to normal, while cavum septum
pellucidum and septal fenestrations are common findings.
Staging schemes have been proposed in recent years, in an
attempt to understand the kinetics of the process as a function
of time and clinical manifestations.1,2

CTE is associated with contact sports and is often
considered a variation of so-called dementia pugilistica
(DP),3–5 a long known condition in boxers associated with
neurologic decline and neurofibrillary degeneration at
autopsy.6 Although generally accepted as a distinct entity,
DP has been controversial since its original description, with

absence of prospective data,7 surprisingly few studies with
autopsy correlation5,8–13 and lack of accounting for co-
morbidities such as substance abuse, infection, and vascular
or neurodegenerative disease.13 In the only large-scale study
of boxers to date, Roberts14 investigated 250 boxers from a
cohort of 16 781 boxers in the UK and found 37 with
neurological lesions, suggesting an overall prevalence of 17%.
Some differences between CTE and DP have been suggested
in a recent review, including clinical presentation, age at
onset, association with APOE genotype,8 and tendencies for
neurological versus psychiatric signs, although none of these
features provide a clear separation. Both CTE and DP tend to
be viewed as variants of the same condition—progressive
tauopathy caused by brain trauma.1

The exposure to sport along with the increase in ptau in
parenchymal brain tissue has suggested head trauma as the
underlying biomechanical etiology of CTE. Indeed, the recent,
heightened awareness of concussion and subconcussion as
potentially important15 comes from studies in National
Football League (NFL) players. Rare cases of CTE have been
suggested in hockey player,1 professional wrestlers, rugby
players,16 soccer players,12 a professional baseball player, and
a circus performer.17 The issue of CTE possibly resulting from
combat-related traumatic brain injury (TBI) has also been
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raised; however, its existence as an entity in combat veterans
and potential mechanisms of injury, have yet to be
confirmed.18

The clinical manifestations associated with CTE in recently
characterized cases are largely psychiatric, and include
aggression, explosive anger, impaired impulse control,
domestic disarray, depression, and heightened suicidality,1

although cognitive impairment, short-term memory loss, and
headache are also reported. The nature and rate of
progression, however, remains an open question.8

ACCEPTED CTE PARADIGM
The gaps in the knowledge of CTE are substantial, and the
collective human data, which are retrospective, and largely
based on self-selected cases, permit no conclusions as yet,
regarding etiology or its existence as a distinct clinicopatho-
logic entity. Nevertheless, the CTE paradigm from TBI to
neurodegeneration is generally accepted, with efforts directed
more at identifying the molecular events responsible for the
neurodegeneration, than confirming its existence.19

TBI and Concussion
The paradigm begins with the heterogeneous, imperfectly
modeled, and complex condition termed TBI. In-depth
reviews of TBI are available.19 Briefly, TBI most often signifies
loss of consciousness and is arbitrarily termed ‘mild’ if the loss
of consciousness is up to 30min. Alteration in consciousness
for up to 24 h, or posttraumatic amnesia for up to 24 h, is also
accepted under the mild TBI umbrella. The diagnosis of mild
TBI may be entirely subjective, as it is often based on self-
reported neurological symptoms.20 Thus, although mild TBI is
portrayed in the literature as a definable condition, it
encompasses a wide spectrum of potential biomechanical
precursors, including nature and type of impact, directionality
of acceleration-deceleration phenomena, and individual sus-
ceptibilities, as well as the interpretation itself which is often
subjective, and often provided by physicians and other
personnel with wide variability in experience in the diagnosis
of TBI. There is a tendency for ‘TBI’ to be used for military-
related TBI, given the spectrum from mild to severe, and for
‘concussion’ to be used in sport, in place of mild TBI.

Concussion in contact sports, either objective or subjective,
is a common and inevitable accompaniment of a range of
sports.21 Indeed, in high school sports in the US, the
concussion rate in girls’ soccer is comparable with that of
boys’ football.22 The diagnosis of concussion often presents a
challenge among sports medicine physicians and athletic
trainers, just as mild TBI may be a challenge to the medical
personnel in armed conflicts. Assessment by physicians with
specific expertise in concussion is ideal, although this is often
not available. Codified evaluation and management strategies
are in progress.21

Risk factors for concussion have been only obliquely
addressed in the context of CTE. Among these are history of
previous concussion, number and severity of concussion, age,

gender, pre-existing mood disorders, pre-injury learning
disabilities such as attention deficit hyperactivity disorder,
and history of migraines.23 Prolonged concussive symptoms
or post-concussive syndrome that may persist in a minority of
patients for weeks or even years, adds an additional level of
complexity and pathophysiological uncertainty to the concept
of TBI.

It is of some passing interest that one high-profile NFL
football player who was determined to have some degree
of ptau deposition post-mortem had no documented
concussions during his football career at any level prior to
committing suicide at the age of 43. This case tends
to de-emphasize the importance of concussion per se, and
elevates subconcussive impact as a potential etiological
factor. Regardless of the specific concussion history in
athletes, however, uncertainties regarding concussion and
potential biomechanical antecedents to CTE are evident,
notwithstanding the certainty with which concussions are
viewed as etiological in the media as well as the medical
literature.24

Diffuse Traumatic Axonal Injury (DAI) and Biomechanics
of Concussion
Understanding concussion in the acute state from the
standpoint of neuropathology is problematic in that the
neurological deficit is transient and without mass effect, ie,
the patients survive and do not require neurosurgery,
precluding pathological evaluation. The pathology and
mechanics of concussion are therefore difficult to study
in vivo. One study that looked at brain changes in individuals
who expired from other causes shortly after concussion found
evidence of axonal injury, including involvement of the
fornix, suggesting similarities with DAI and involvement of
memory circuitry.25 Such data, however, are sparse. On the
other hand, studies on brain contusion, a commonly observed
lesion and one that is definable based on anatomic pathology
have led to the basic concept that sheer stresses, or the
movement of one tissue plane over another, are necessary for
parenchymal brain injury.26 As emphasized by Holbourne27

more than 70 years ago, the brain’s relative incompressibility
and lack of rigidity necessitate shear stresses over compressive
stresses and rotational acceleration over linear acceleration.
One could reasonably speculate, therefore, that shear stresses,
rotational acceleration, and axonal disruption or injury are
the basic physical precursors to concussion.

Purely biomechanical models in primates from the 1970s
and 1980s may have also shed some initial light on concussion
indirectly through the characterization of DAI. In these early
primate models, it was determined among other factors that
acceleration in the coronal plane28 and low strain rate
(prolonged interval over which acceleration occurs) favored
prolonged traumatic unconsciousness, poor outcome, and
DAI at necropsy.29,30 The biomechanics of DAI may
therefore follow that of concussion, albeit with more severe
clinical and pathological outcome. This is also consistent with
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the clinical definition of DAI requiring 6 h of traumatic
unconsciousness,31 which differs from concussion largely on
the basis of duration of the unconsciousness.

At the experimental level, the last 30 years has seen a
proliferation of in vitro32 and mammalian33 trauma models,
which have led to an exponential expansion of data
implicating essentially all major molecular disease mechan-
isms. The collective data indicate that TBI and otherwise
biomechanical forces acting on parenchymal brain tissue
result in pleiotropic deleterious, biochemical sequelae,
encompassing signal transduction, elaboration of toxic
proteins, unfolded protein responses and ER stress, oxidative
stress, dysfunction in mitochondria and energy metabolism,
channelopathy effects with elaboration of pore forming
molecular complexes, inflammatory cytokine production,
perturbations in calcium and electrolyte metabolism, and
induction of apoptosis, among other mechanisms.34–41 With
respect to CTE, however, these processes lead to, or otherwise
facilitate, tau phosphorylation via altered kinase-phosphatase
metabolism,42 resulting in microtubule instability and pre-
cipitation of ptau as toxic, insoluble intraneuronal and intra-
astrocytic inclusions.43

CTE as a Prion Disease
Somewhat concerning are the studies suggesting protein
templating with trans-synaptic transmission44 and the
incorporation of the tauopathies in the lexicon of prion (or
prion-like) diseases. Transgenic mice overexpressing P301L
tau in the entorhinal cortex, for example, demonstrate de
novo wild-type ptau in brain regions synaptically connected
with the performant pathway.45 Further, prion-like self-
propagating ‘strains’ of tau appear along neuroanatomical
pathways following intracerebral inoculation of experimental
mice transgenic for human tau.46 Similar strain propagation
of amyloid-β has been demonstrated with synthetic peptides,
and suggested as basis for phenotypic variability to human
AD.47,48 These data taken together make a sophisticated case
for spreading toxicity in a prion-like manner.

Phosphorylated tau species according to this hypothetical
paradigm thus ‘spreads’ along neuroanatomical pathways,
leading to disease progression and neurodegenerative disease.
The frequent involvement of frontal and temporal lobes by
the neurotoxic process is said to cause neurobehavioral
symptoms such as disordered impulse control, explosive
aggressiveness, extreme impulsivity, impaired judgment and
social function, and heightened suicidality.1 Medial temporal
lobe involvement may disrupt episodic memory, whereas the
involvement of the brainstem implicates a number of
functions.49

In short, TBI induces neuroinflammation, leading to tau
phosphorylation, leading in turn to disease progression,
possibly encompassing unfolded protein responses, ptau
templating with trans-synaptic spread of toxic, self-
propagating strains, and neurodegeneration in a distribution
that favors neuropsychiatric disturbances, impaired cognition,

and motor signs (Figure 1). Moreover, head trauma, even
singular head trauma, may initiate this process according to
reports,2 and may set up a cellular milieu favoring
neurodegeneration, including AD, frontotemporal lobar
degeneration, and amyotrophic lateral sclerosis.

PROBLEMS WITH THE CURRENT PARADIGM
The DP Literature
The concept for present day CTE, including the naming of the
condition, is based on DP, which, while broadly accepted as a
clinicopathological entity, is comprised of a relatively small
number of cases with remarkably heterogeneous pathology.
Moreover, the few DP cases described in the literature have
been examined over many decades using differing techniques,
including dyes and silver impregnation, with a minority of
cases assessed via immunohistochemistry for ptau and
amyloid-beta.

The term ‘punch drunk’ appeared in the medical literature
in a 1928 JAMA article by Martland, in which small
hemorrhages were emphasized pathologically. The first case
of DP with neurofibrillary degeneration was described by
Brandenberg and Hallervorden50, in a 51-year-old retired
boxer (retired at age 28 after 11 years as an amateur boxer),
although plaque pathology and cerebral amyloid angiopathy
were also noted, as was death from intracerebral hemorrhage,
raising the possibility of early onset AD. Courville51 in 1962
reported an autopsy case of punch drunk syndrome, although
no neurofibrillary degeneration or features presently ascribed
to CTE were mentioned. Constantinides and Tissot in 196752

described severe degeneration of the substantia nigra with
numerous neurofibrillary tangles in a 58-year-old man who
had been retired from boxing for 34 years,5 raising the
possibility of co-morbid tauopathy. Payne11 in 1968 described
autopsy findings in six boxers in their forties, calling attention
to septal abnormalities. CTE changes according to modern
concepts (perivascular and superficial neurofibrillary change,
neurofibrillary change in the depth of sulci) were not
apparent, although ‘early’ neurofibrillary changes were
observed in two brains, and were considered non-specific.

The largest series to date, however, was that of Corsellis
et al,5 who described findings in 15 boxers. In this seminal
article, neurofibrillary degeneration out of proportion to
plaque pathology was established as an integral pathological
change, while also emphasizing septal changes, substantia
nigra degeneration, and cerebellar scarring. Clinical findings
often included speech abnormalities, ataxia, and movement
disorders. A closer look at the cases, however, indicates a level
of complexity and variability. At least 6 of the 15 cases were
accompanied by heavy alcohol use. Co-morbidities such as
hypertensive vascular disease with lacunar infarcts were
evident in some cases. One patient had tabes dorsalis, another
had a cavernous malformation of the globus pallidus, while
others had little pathology and were neurologically normal
during life. A number of the subjects boxed in the early part
of the twentieth century, when several hundred fights were
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not uncommon. The reduced exposure in boxers presently
may significantly reduce the risk of chronic neurologic
sequelae.53 Also noteworthy is the subsequent examination
of many of the original cases using immunohistochemistry to
amyloid beta, which showed not only diffuse plaques, but also
neuritic plaques which in some cases were sufficient in
quantity to warrant the diagnosis of AD.9,54 Extreme
substantia nigra degeneration with neurofibrillary change in
residual neurons also raises the possibility of sporadic
tauopathy (e.g., corticobasal syndrome, progressive supra-
nuclear palsy). Atrophy involving hypothalamus and mam-
millary bodies in some of these cases warrants discussion of
thiamine deficiency and Wernicke–Korsakoff syndrome. It
should also be noted, in light of the recently identified genetic
lesions that cause FTLD/ALS, family history was not
commented upon in any of the cases in this series. Thus,
although the description of neurofibrillary degeneration was
remarkable, the limited numbers, extensive head trauma
exposure, and co-morbidities indicate a level of uncertainty
even in the relatively well-accepted entity of DP.

More recent cases are fewer but perhaps more compelling.
For example, Hof et al55 described neurofibrillary tangle
clusters in frontal and temporal cortices in a 24-year-old

autistic patient who was prone to frequent and protracted
self-injurious head-banging. The findings included a tendency
for focal involvement of cortical laminae 2 and 3, now
considered a feature of CTE. Geddes et al12 noted neuro-
fibrillary change with a tendency for basal cortical involve-
ment by tau immunohistochemistry in two boxers in their
twenties, and further called attention to perivascular tau,
also considered a hallmark of CTE. Neither subject had
clinical signs suggesting DP, however. About the same time,
the New England Journal of Medicine presented a case of
multisystem neurodegenerative disease, including involve-
ment of the spinal cord and substantia nigra, in a 67-year-old
retired boxer (10 year career with over 100 bouts).56

Interestingly, probable amyotrophic lateral sclerosis was
diagnosed in the patient’s brother, raising the possibility
of pathogenic mutation. Schmidt et al57 examined brain
tissue from this same patient and one additional retired
boxer, aged 78, and noted that the tau isoform profile in
soluble fractions resembled that of AD. The second patient,
however, had Lewy bodies in the substantia nigra, again
raising the issue of co-morbid neurodegenerative disease.
Areza-Fegyveres et al58 reported a case of DP with a
clinical progression that was indistinguishable from AD.

Figure 1 The empirical data regarding tauopathy and contact sports appear to indicate that certain contact sports may be associated with an altered
distribution of phosphorylated tau when examined at autopsy years to decades following sports participation. The significance of this change and the
correlation between such changes and clinical signs are matters of considerable uncertainty, as more research with more rigorous prevalence data is
necessary even for this preliminary assertion. This is in contrast, however, to the accepted paradigm, none of which has been objectively demonstrated
in humans. The accepted paradigm indicates that head trauma per se and in particular concussion, initiates the overall process, which in turn sets in
motion neuroinflammatory processes that span a large spectrum of biology. Phosphorylation of tau via pathological alteration of kinase-phosphatase
equilibrium subsequently occurs in brain regions vulnerable to mechanical stress. Soluble, low-n phospho-tau oligomers of altered conformation or
‘strain’ then spread along neuroanatomical pathways, effect conformational changes in other phospho-tau species via protein templating, and cause
trans-synaptic neurotoxicity, which fosters disease progression. The tendency for frontotemporal involvement by phosphorylated tau further is
suggested to be the basis for complex behaviors, such as impulse control, mood, and attention, as well as the reported psychiatric manifestations of
CTE. Involvement of memory pathways is suggested to disrupt episodic memory. The overall neurotoxic cascade is said to overlap with, include, or even
cause, pathology of Alzheimer’s disease, frontotemporal lobar degeneration, and/or amyotrophic lateral sclerosis.
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He had fought more than 60 bouts but had never been
knocked out.

McKee and colleagues on the other hand more than
doubled the cases of sport-associated tauopathy reported in
the literature with a remarkable brain procurement effort,
particularly targeting NFL athletes.1 Emphasis was placed on
the pattern of tauopathy, best illustrated by thick, sledge
microtome whole-mount immunostains. Thus, the updated
pathology of CTE includes: (i) localized neuronal and glial
accumulations of phosphorylated tau involving perivascular
areas of the cerebral cortex, sulcal depths, and with a
preference for neurons within superficial cortical laminae; (ii)
multifocal axonal varicosities involving deep cortex and
subcortical white matter; (iii) relative lack of Aβ deposits;
and (iv) TDP-43-positive inclusions and neurites. The first of
the above findings is arguably the most robust, as these
distributions are generally not described as incidental
accumulations with age or as a prominent feature in AD.
Axonal varicosities, relative lack of Aβ, and TDP-43 pathology
may be difficult to distinguish from other diseases and
controls in blinded analyses.

In a review of the CTE (including DP) literature to date,
however, Gardner et al8 noted that of the 61 pure athlete cases
reported by McKee et al, 25% demonstrated no pathological
features of CTE, and 25% had ‘pure’ CTE pathology. Of those
with pure CTE pathology, clinical findings were sometimes
absent or nonspecific. Noteworthy also was that only a
minority of cases showed disease progression, contrary to the
commonly held view that CTE is a neurodegenerative disease.

Both DP as classically defined, and modern day CTE,
therefore span a wide spectrum from normal to advanced
disease, from the standpoint of both clinical presentation and
neuropathological findings, with disease progression being
doubtful in many cases according to one review. The broad
question of whether DP or CTE merits inclusion in the broad
category of neurodegenerative disease may be debated in light
of these data, although the low thresholds for exposure and
diagnosis are understandable as information is still
accumulating.

Ptau as a Mediator of Disease
Ptau accumulation occurs in a long list of conditions and is
manifestly downstream in Alzheimer’s disease according to
the amyloid cascade hypothesis.59 Some have suggested that
ptau is not only a reactive phenomenon but possibly even a
beneficial or adaptive disease response.60 Neurofibrillary
degeneration, for example, is associated with adducts of
advanced glycation61 and lipid peroxidation;62 these chemical
modifications contribute to protein insolubility, and target
inert accumulations for degradation. Ptau has been shown to
sequester toxic-free radicals and heavy metals,63 and is known
to accumulate in viable cells for decades.64 Transgenic
tauopathy models have further demonstrated lack of
neurotoxicity associated with ptau.65 The appearance of
phosphorylated tau in areas of biomechanical stress or

otherwise neuroinflammation (e.g., depths of sulci, peri-
vascular areas) may therefore be less indicative of toxicity
than of reactivity.

The kinetics of ptau accumulation during life is difficult to
monitor, although research into tau-targeted positron-emis-
sion tomography is progressing,66 and may provide insight
into ptau progression over time, i.e., whether it progresses,
stabilizes, or even regresses. The known age-related ptau
accumulations will require rigorous attention to variations of
normal, particularly in light of the recently described, but
reportedly very common, primary age-related tauopathy.67 In
this aging pattern, ptau involvement of anterior-medial
temporal lobe and brainstem tegmentum, often emphasized
in CTE, is an expected finding.68,69

It should also be noted that the prion-like, tau templating
concept, while raising novel issues about basic protein
chemistry, confronts the shortcomings of the in vitro
experimentation when applied to human disease, such as (i)
requirement of one to several, pathogenic mutations; (ii)
utilization of supraphysiologic concentrations of mutated or
insoluble, phosphorylated protein; (iii) variable pathology;
and (iv) variable behavioral correlates.45,70,71 The juxtaposi-
tion of two pieces of human data may also cast doubt on ptau
templating as an in vivo pathophysiologic event. Braak et al69

note that ptau, as detected by AT8 immunohistochemistry, is
found earliest in the locus ceruleus, and as early as the first
decade of life. In turn, the locus ceruleus is said to be
‘unsurpassed’ in the diffuseness and ubiquity of its connec-
tions throughout the nervous system.72 If ptau templating,
cell-to-cell transmission, and spreading toxicity in a prion-
like manner were in vivo phenomena, it is reasonable to
suggest that clinically significant neurodegeneration would
occur earlier in life and with greater regularity. Nevertheless,
protein templating is increasingly accepted as an in vivo
occurrence and has led to the palpable fear that a
neurodegenerative process could result from a single blow
to the head (http://www.psychologytoday.com/blog/invisible-
wounds/201208/disturbing-new-study). This appears unwar-
ranted from the standpoint of human data.

Genetic Predisposition to Chronic Neurodegeneration in
Professional Athletes
It is commonly stated that genetic susceptibility (yet to be
clarified) may underlie the sporadic appearance of CTE in
athletes.16 In the case of American football, however, CTE is
reported in essentially all professional athletes examined to
date. In the absence of subclassification, such a high
percentage precludes genetic susceptibility studies, as no one
is genetically resistant. That said, apolipoprotein E genotype
(APOE) is often discussed, given its role as the major genetic
risk for sporadic AD. In the largest series to date, APOE allelic
frequencies were comparable with the general population.1

An overrepresentation of the ε4 allele in boxers with
neurological impairment was noted in one study, although
autopsy findings were not available for correlation.73
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Relevant to the discussion going forward may be the
expanding list of pathogenic mutations and polymorphisms
in frontotemporal dementia (FTD) and ALS,74,75 particularly
because (i) signs of FTD overlap with those reported in CTE;
(ii) FTD typically presents in middle age; and (iii) co-
occurrence of ALS and CTE is reported in some cases.1 FTD is
also the second most common type of presenile dementia
after AD and, importantly, the percentages of FTD and ALS
patients with known pathogenic mutations have increased
substantially in recent years.74 Among genetic variants,
microtubule-associated protein tau (MAPT) and progranulin
(GRN) mutation tend to favor an FTD presentation, while
superoxide dismutase-1 (SOD1) mutations present as ALS.76

Mutations involving C9ORF72, TAR DNA-binding protein-
43 (TARDP), Valosin-containing protein (VCP), p62/seques-
tosome-1 (SQSTM1), and ubiquilin 2 (UBQLN2), may have
mixed FTD-ALS phenotypes.

C9ORF72 mutation involves expanded hexanucleotide
repeats on the non-coding portion of chromosome 9, and is
now the most common mutation in both ALS and FTD,
accounting for up to 46% and 29% of familial ALS and FTD
cases, respectively, in European populations.77 This recent
finding may add to the understanding of CTE in that a subset
of athletes presenting with signs of FTD and/or ALS may be
excluded from the CTE category by genetic analysis. It also
raises the issue of potential outcome in athletes with
unrecognized genetic susceptibility to known diseases, ie,
whether athletic participation influences neurodegeneration
or is otherwise incidental in individuals with expanded
C9ORF72 repeats.

The assignment of TDP-43 immunohistochemistry to the
cardinal pathological features of CTE may be problematic
owing to morphologic heterogeneity of TDP-43 immunor-
eactivity apparent in a range of conditions. TDP-43 positivity
is found to varying extents with age and AD.78 In the FTD/
ALS spectrum, TDP-43 positivity may be present in variable
cell types (neurons versus glia), subcellular compartments
(nucleus versus cytoplasm), distributions (superficial cortical
versus diffuse versus subcortical), and morphologic expres-
sions (perikaryal and nuclear inclusions of various morphol-
ogies versus neurites).79 TDP-43 positivity is further observed
in a subset of familial and sporadic FTD, with and without
TARDP, GRN, and C9ORF72 mutation.74 The finding in CTE
cases is therefore not surprising and appears to be an
empirical phenomenon, rather than a pathogenic signature.
Rigorous controls for age and other competing diagnoses are
probably necessary before accepting TDP-43 reactivity as
hallmark pathology.

MAPT mutation also may be relevant to CTE given that
both FTD with MAPT mutation and CTE show increased
ptau at autopsy, both are reported to show behavioral
disturbances, and both are reported to show cognitive
deterioration and parkinsonism, in at least some cases.74

MAPT mutations account for 5–20% of familial FTD cases,
which is significant given the tendency for pathogenic

mutation in FTD overall. MAPT mutation screening therefore
may be considered in athletes presenting with presenile onset
of behavioral disturbances and parkinsonism. Likewise, as the
frequency of presenilin-1 (PSEN1) mutation (the most
common pathogenic mutation in AD) increases with early
onset dementia and strength of family history,50,80 autosomal
dominant AD may be considered in middle-aged athletes
presenting with dementia and possible family history. The
occasional cases in the DP literature with middle age onset
dementia and frank AD pathology,5 for example, suggest early
onset AD rather than DP.5,50 Finally, although only 10% of
Parkinson disease patients have a positive family history, some
pathogenic mutations produce substantia nigra degeneration
without synucleinopathy (e.g., LRRK, parkin),81 which may be
considered in athletes with early onset parkinsonism,
substantia nigra degeneration at autopsy, and no Lewy bodies.

Neuropathology as a Predictor of Function in
Degenerative Proteinopathies
The strict association between ptau lesions and behavioral or
dysexecutive symptoms, and indeed the implied causal link
between the two,18,82 is problematic in that autopsy brain
examination, including ptau immunohistochemistry, is useful
for structural neuropathology. Neuropsychiatric signs, in
contrast, are functional or biochemical. In point of fact,
correlating basic neurologic dysfunction even with rigorously
quantitated lesions and the availability of copious cognitive
data is challenging.83 Blinded neuropathologic examination,
for example, cannot distinguish intact cognition from
dementia in the very old.84 Discerning clinical presentation
among the FTD subtypes, or initial presentation in Lewy body
diseases (cortical signs versus parkinsonism),74,85–87 also
cannot be carried out accurately with available methodology
and consensus criteria. With this in mind, drawing mechan-
istic associations between tauopathy at autopsy, and psychia-
tric signs or complex behaviors such as suicide, explosive
anger, impulse control, or posttraumatic stress disorder,88

appears beyond the scope of neuropathological interpretation.

Neurodegenerative Disease Risk with Athletic Exposure
In a recent study of former NFL players by Lehman et al,89 the
mortality rate from neurodegenerative disease was three times
greater than that of the general population, whereas the
mortality rate overall of NFL players was about half that of the
general population. The numbers in this study were relative
small, with 334 former players, of which there were two cases
of AD and six ALS cases. Moreover, none of these cases had
autopsy confirmation or genetic screening. One study of
professional Italian soccer players showed an increased risk of
ALS,90 although selection bias and possible confounding
influences of dietary and environmental factors have been
raised.91 Physical activity in general has also been suggested as
a risk for ALS,92 but an association with physical activity per se
has been generally refuted.93 The only class II study of ALS
incidence in American football found no risk.94 The
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improved mortality in the Lehman et al study is also
interesting in that it raises the issue of health benefit of
sport, which is only rarely discussed in the context of CTE.16

Regardless, the available evidence does not support a cause–
effect relationship between exposure to head trauma in
contact sports and neurodegenerative disease.

Arguably, the most substantial shortfall of the autopsy
studies on DP and CTE, and autopsy studies in general, is the
lack of prevalence data. The relationship between CTE
changes at autopsy and neuropsychiatric signs and symptoms
is therefore an open question, as is the extent and impact of
susceptibility factors, kinetics of progression, and whether
CTE exists as a distinct clinicopathologic entity. It is also
noteworthy that NFL athletes do not appear to have an
increased risk of suicide compared with the general popula-
tion (data suggest a decreased risk),95,96 casting some doubt
on the inference that concussive or subconcussive exposure
leads to heightened suicidality.

The Role of Neuroplasticity in Repetitive Head Trauma
Parents, athletes, and perhaps combat veterans may find
solace in the fact that one can survive a career in the NFL
neurologically intact and with no significant proteinopathy.
Figure 2, for example, depicts the only brain finding identified
in a retired, middle-aged NFL player. This individual came to
autopsy after passing away from natural causes, with no
history of neurologic or psychiatric illness. He further played
on the offensive line, a position that suffers the most frontal
impacts of all positions in the sport.97 He retired after several
years in the NFL, having also played for 5 years at a major
Division I university. A conservative estimate, based indirectly
on accelerometer studies, is that he suffered as many as 10 000

head impacts exceeding 10 times g, over the course of just his
collegiate and professional careers.98 This athlete again had no
neurologic or psychiatric disturbances during life, and, at
autopsy, his brain was entirely normal by gross and
microscopic examination. The only incidental finding, after
extensive examination of the brain for ptau throughout the
neuraxis was a small collection of neurofibrillary tangles and
neuropil threads in the superficial amygdala, and a pretangle
and rare neuropil threads in the locus ceruleus. This extent
of ptau may be found in any individual of this age,
irrespective of APOE, occupation, head trauma exposure, or
other factors.

Although this negative case may not appear noteworthy on
casual review, it should be pointed that this is the first
reported middle-aged NFL athlete to date with no CTE
changes.1,2 This raises the issue of the much needed
prevalence data and selection biases, if not the resilience
and plasticity of the human brain, and its ability to endure
protracted physical punishment in the setting of high-energy
collision sports at the highest level.

CONCLUSIONS
The recent CTE literature has advanced the discussion beyond
the preceding CTE literature, by codifying a specific distribu-
tion of proteinopathy, and laying out criteria for future studies.
The criteria for CTE nevertheless appear overly inclusive,
which may in turn hamper understanding of molecular-genetic
underpinnings. It may also be acknowledged that there are
more questions than answers about all aspects of the CTE
concept, from biomechanical substrates to molecular patho-
genesis to the existence of CTE as a distinct entity.
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