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Digital image analysis outperforms manual
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In the spectrum of breast cancers, categorization according to the four gene expression-based subtypes
‘Luminal A, ‘Luminal B, ‘HER2-enriched, and ‘Basal-like’ is the method of choice for prognostic and predictive
value. As gene expression assays are not yet universally available, routine immunohistochemical stains act as
surrogate markers for these subtypes. Thus, congruence of surrogate markers and gene expression tests is of
utmost importance. In this study, 3 cohorts of primary breast cancer specimens (total n=436) with up to 28 years
of survival data were scored for Ki67, ER, PR, and HER2 status manually and by digital image analysis (DIA). The
results were then compared for sensitivity and specificity for the Luminal B subtype, concordance to PAM50
assays in subtype classification and prognostic power. The DIA system used was the Visiopharm Integrator
System. DIA outperformed manual scoring in terms of sensitivity and specificity for the Luminal B subtype,
widely considered the most challenging distinction in surrogate subclassification, and produced slightly better
concordance and Cohen’s k agreement with PAM50 gene expression assays. Manual biomarker scores and DIA
essentially matched each other for Cox regression hazard ratios for all-cause mortality. When the Nottingham
combined histologic grade (Elston-Ellis) was used as a prognostic surrogate, stronger Spearman’s rank-order
correlations were produced by DIA. Prognostic value of Ki67 scores in terms of likelihood ratio x2 (LR x?) was
higher for DIA that also added significantly more prognostic information to the manual scores (LR—Ax?). In
conclusion, the system for DIA evaluated here was in most aspects a superior alternative to manual biomarker
scoring. It also has the potential to reduce time consumption for pathologists, as many of the steps in the

workflow are either automatic or feasible to manage without pathological expertise.
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Breast cancer is still by far the most common cause of
cancer death among women worldwide.! The World
Health Organization suggests a largely morphological
classification of this heterogeneous disease,?
whereas categorization according to the four gene
expression-based ‘intrinsic’ subtypes ‘Luminal A/
‘Luminal B,” ‘HER2-enriched,” and ‘Basal-like’ is
the method of choice for prognostic and predictive

Correspondence: Dr G Stalhammar, MD, Department of Oncology
and Pathology, Karolinska Institutet, CCK, Stockholm 171 76,
Sweden.

E-mail: gustav.stalhammar@ki.se

Received 9 October 2015; revised 8 January 2016; accepted 8
January 2016; published online 26 February 2016

value.>® However, gene expression tests are

not universally available in clinical practice, as they
are still rather expensive and time consuming.’
This has created an opportunity for routine
immunohistochemical stains to act as surrogate
markers (biomarkers) for the gene expression-based
subtypes. As recommended by international expert
consensus,®™ primarily four biomarkers are analyzed
during the routine pathological work-up of breast

cancer specimens: estrogen receptor-a (ER),
progesterone receptor (PR), human epidermal
growth factor receptor 2 (HER2), and the

proliferation-associated nuclear protein  Ki67.
Assessments of these biomarkers are then combined
into surrogate subtype classifications, guiding

www.modernpathology.org


http://dx.doi.org/10.1038/modpathol.2016.34
mailto:gustav.stalhammar@ki.se
http://www.modernpathology.org

Digital image analysis in breast cancer

G Stalhammar et al

319

Table 1 Characteristics of patients and material included in this study, and CONSORT diagram indicating which patients were evaluated
for PAM50, clinical, survival, manual, and digital image analysis immunohistochemical data from the breast cancer registry and

individual patient journals

Cohort no. 1 2
No. of patients 195 84
Breast cancer diagnosis, period 2006-2010 1994-1996
Mean age at breast cancer diagnosis (years) 58 58
Histologic grade

G1 31 19

G2 90 35

G3 74 30
Mean tumor diameter (mm) 25 22
Proportion of patients with axillary lymph node metastasis 29% 38%
PAMS50 Luminal A, n (% of cohort) 123 (63) 24 (29)
PAM50 Luminal B, n (% of cohort) 50 (26) 17 (20)
PAMS50 HER2-enriched, n (% of cohort) 10 (5) 10 (12)
PAMS50 basal-like, n (% of cohort) 12 (6) 16 (19)
PAM50 normal-like, n (% of cohort) 0 (0) 17 (20)
PAMS50 subtype not available, n (% of cohort) 27 (12) 0 (0)
10-Year overall survival N/A 62%

Type of material contributed to this study

Full sections (Ki67) and TMA (ER, PR, and HER2)

Patients identified in registries (n=318)

Primary tumor paraffin blocks unavailable (n=63)
Unable to determine PAMS50 subtype (n=11)

Unable to access clinical data and/or manual scores of
biomarkers (n=21)

<100 tumor cells in TMA cores (n=16)

.

Patients available for DIA THC4 (n=207)

Digital scanning failed (n=3)

Unable to align or analyze image files in DIA software
o Due to ink- or tissue artifacts (n=2)
o Due to insufficient amount of tissue for analysis (n=4)
o Due to missing image identification (n=3)

and DIA [HC4 data (n=195)

Patients with available PAMS50, clinical, manual IHC4

Patients identified in registries (n=159)

Primary tumor paraffin blocks unavailable (n=61)
Insufficient tumor tissue left in paraffin block (n=14)
PAMS50 subtype not available (n=0)

Digital scanning failed (n=0)

Unable to align or analyze image files in DIA software (n=0)

A,

manual IHC4 and DIA [HC4 data (n=84)

Patients with available PAMS50, clinical, survival

Full sections (Ki67)
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conclusions about the tumors’ biological character-
istics and expected response to therapy.3-%910
Congruence of evaluations of these surrogate markers
to the gene expression tests are consequently of
utmost importance, not least as discrepancies in
classification induces dissimilar treatment decisions
such as on which patients to give cytotoxic
chemotherapy.  Unfortunately, assessments of
biomarker status struggle with intra- and interobser-
ver variability, as well as discordance with the gene
expression tests.'’'2 This is perhaps especially
evident for Ki67'3-1° as there is no consensus on
what tumor region or number of cells to score!316:17
and what cutoff values for the proportion of positive
cells (Ki67 index) distinguish highly from lowly
proliferative tumors. In fact, even the consensus
guidelines that do exist have been considered
unreliable outside individual laboratories’ own refer-
ence data.3%17 A threshold proportion of Ki67
positivity within the range of 20 to 29% to distinguish
the highly proliferative ‘Luminal B-like’ disease from
the lowly proliferative ‘Luminal A-like’ disease is
however mentioned,® and at our and several other
institutions a cutoff of >20% for highly proliferative
tumors is commonly used.*'82! The most recent
version of these guidelines mentions that this
uncertainty and variability may be reduced by image
analysis, but provides no further details on how to
apply this to biomarker testing in practice.’

Hence, in this study we aim to contribute with
precisely that; we take an equally broad and detailed
approach on manual and digital image analysis (DIA)
evaluation of biomarkers in invasive breast cancer by
comparing a novel system of DIA with the manual
immunohistochemical method used in current clinico-
pathological routine for performance in subclassifica-
tion and prognostication. Furthermore, we use our three
different cohorts to evaluate and suggest methods to
improve the concordance to gene expression assays,
prognostic power, reproducibility, as well as to
reduce time consumption for pathologists.

Materials and methods
Patients and Samples

Two cohorts of primary breast cancer specimens
were used for this study, along with a third cohort
consisting exclusively of tissue microarrays, as
reported in the Supplementary Data (total n=436).
Cohort 1 (n=195) consists of fresh frozen and
paraffin-embedded breast cancer tissue from patients
who underwent surgery at the Karolinska University
Hospital from 1 January 2006 to 31 December 2010.
They, along with data on clinically reported manual
immunohistochemical and HER2 FISH results, were
identified in the population-based Stockholm-Got-
land breast cancer registry and individual patient
journals after approval from the regional ethical
review board. From the paraffin blocks, full sections
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for DIA Ki67 scoring were prepared as well as a
tissue microarray for ER, PR, and HER2 scoring:
hematoxylin and eosin-stained slides were used for
selection of invasive tumor areas without ductal
carcinoma in situ, intense inflammation, fibrosis,
necrosis, or poor fixation. Then, 4-8 tissue cores
(@ 0.8mm) per patient were punched and
mounted into a tissue microarray using a
semiautomated instrument (Minicore 3, Tissue
Arrayer, Alphelys, France). After exclusions of
patients with incomplete PAM50 gene assay data
and/or clinical immunohistochemical data, tissue
microarray cores with < 100 tumor cells,?2:?3 failed
digital scanning, and errors in software operation,
195 patients remained for analysis (Table 1).

Cohort 2 (n=84) consists of paraffin-embedded
breast cancer tissue from patients who underwent
surgery at the Karolinska University Hospital,
Stockholm, from 1 January 1994 to 31 December
1996. These were identified in the population-based
Stockholm—Gotland breast cancer registry after
approval from the regional ethical review board.
This cohort has been published previously.?*2° The
cohort originally included 159 cases of whom 84 had
PAMB50 data and sufficient paraffin-embedded tumor
tissue for glass slide sectioning available, the latter
enabling manual scoring of Ki67 by a board-certified
pathologist and scanning for DIA (Table 1).
A subgroup of 41 tumors classified into Luminal
A and Luminal B subtypes was assessed by two
additional board-certified pathologists for a brief
analysis of interobserver concordance.

A third cohort of 130 consecutive tumor
specimens collected at the Department of Pathology,
Uppsala University Hospital, Uppsala, Sweden, from
1 January 1987 to 31 December 1989 was also
analyzed. Here, ER, PR, HER2, and Ki67 were scored
on tissue microarray sections only. Consequently,
experimentation with and comparison of different
scoring methods was not possible when assessing a
heterogeneously distributed biomarker such as Ki67
in this cohort. Full details on the results of manual
and DIA scoring, including optimal Ki67 thresholds
for the highly vs the lowly proliferational Luminal
subtype, congruence to gene expression assays,
and overall survival analysis can be found in the
Supplementary Data.

Immunohistochemistry

All three cohorts, as well as a separate tissue
microarray with 78 tumor cores from 78 random
breast cancer tissue specimens that were produced to
confirm optimal staining conditions and to allow for
calibration of the DIA system, were prepared at the
accredited clinical laboratory of the Department of
Clinical Pathology, Karolinska University Hospital.
The paraffin blocks were cut in 3 pym sections,
conditioned in CC1 solution (Ventana Medical
Systems, Tucson, AZ, USA) for 36 min (Ki67) to



Figure 1 Top: [llustration of the alignment of two adjacent slides
stained with a pancytokeratin marker such as CkMNF116 and a
biomarker (ER, PR, or Ki67), respectively. Middle: Green dotted
line marks part of a region of interest, scored for Ki67 index. Blue
polygons mark nuclei positive for both Ki67 and CkMNF116.
Green polygons mark nuclei positive for CkMNF116 but negative
for Ki67. The proportion of blue polygons to the sum of blue and
green polygons constitutes the Ki67 index. Bottom: Illustration of
heat map function where the Visiopharm integrator system
software has analyzed the digitally scanned glass slide (left) for
tumor area with highest concentration of cells stained by both the
pancytokeratin marker and Ki67, marked in red (right). Scale bar,
middle =50 pm. Scale bar, lower =500 pm.

64 min (PR) and incubated with mouse monoclonal
antibodies for CkMNF116 and Ki67 (clone Mib-1)
(Dako A/S, Glostrup, Denmark) and rabbit
monoclonal primary antibodies (Ventana) for ER
(clone SP1), PR (clone 1E2), Ki67 (clone 30-9), and
HER2 (clone 4B5) at 35°C (HER2) or 37 °C (others)
for 16min (Ki67) to 44min (ER) according
to the manufacturer’s instructions, and finally
counterstained with hematoxylin (section order in
Supplementary Table 6). Cohort 2 was stained with
CkMNF116 and Ki67 (clone 30-9) only. Note that ER,
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PR, and HER2 were stained on tissue microarray
slides in all cohorts, as these biomarkers are relative
to Ki67 homogenously distributed in breast cancer
tissue?6-28 and thereby well accepted for analysis in
biopsies and tumor cores.?%30

Gene Expression Assays

For our first cohort, RNA was extracted from frozen
tumor tissue using AllPrep DNA/RNA/Protein mini
kit (Qiagen, Hilden, Germany) and assessed to ensure
high quality (RIN >8). Next, 1 ug of RNA was used
for rRNA depletion using the Ribo-Zero removal kit
(Illumina, San Diego, CA, USA). Stranded RNAseq
libraries were then constructed using TruSeq
Stranded Total RNA Library Prep Kit (llumina) at
the Science for Life Laboratory (Stockholm,
Sweden). Gene-level expression estimates were
calculated using HTSeq count version 0.6.1,' and
data were normalized using the TMM method?®? in
the edgeR package.?® Unaligned RNAseq data from
the ‘Cancer Genome Atlas’ breast cancer data set3*
were downloaded (n=1073) and processed through
an identical bioinformatics pipeline as the primary
data set. A total of 35 observations were excluded as
potential outliers based on inspection by PCA.
Of the 1038 remaining individuals, 885 had molecular
subtype assignments available. Samples classified as
‘Normal-like subtype’ (n=105) were excluded as the
clinical relevance for this subtype has been
questioned,® leaving 780 samples for further analy-
sis. To reduce any potential batch differences between
our and the ‘Cancer Genome Atlas’ data sets, the two
data sets were preprocessed using the same bioinfor-
matic pipeline and variables were mean centered and
scaled to unit variance.

Tumors were then classified according to the
PAMS50 intrinsic molecular subtype model.” A
nearest shrunken centroid classifier’® was trained
on the ‘Cancer Genome Atlas’ data set using the
PAM50 gene set.” Each tumor in our material was
then classified into one of the subtypes by applica-
tion of the nearest shrunken centroid model. Here, it
is worth noting that when PAMS50 subtyping is
applied to a whole tumor, intratumor heterogeneity
is not taken into consideration and as such is
unlikely to represent each and every subset of clones
within the tumor.37-39

Digital Image Analysis

After sectioning and staining, all glass slides were
digitally scanned at x 20, using a Nano Zoomer 2.0
HT (Hamamatsu Photonics K.K., Hamamatsu, Japan)
at the Departments of Clinical Pathology, Danderyd
Hospital, Stockholm, and Copenhagen University
Hospital, Rigshospitalet, Denmark.

The DIA software used was the Visiopharm
integrator system for Windows 7, version 4.6.3.857
(Visiopharm A/S, Hoersholm, Denmark), run on
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Table 2 Molecular ‘intrinsic’ breast cancer subtypes and surrogate definitions by immunohistochemical profile

Intrinsic subtype

Surrogate IHC classification

Luminal A
Luminal B

HER2-enriched
Basal-like

ER >1% and/or PR >20% and HER2 ‘negative’ and Ki67 ‘low’

1. ER >1% and/or PR >20% and HER2 ‘negative’ and Ki67 ‘high’ or
2. ER >1% and PR < 20% and HER2 ‘negative.” Any Ki67 or

3. ER >1% and/or PR >1% and HER2 ‘positive.” Any Ki67

ER <1% and PR <1%. HER2 ‘positive.” Any Ki67

ER <1% and PR <1%. HER2 ‘negative.” Any Ki67

% =Proportion of tumor cells stained with the respective biomarker. ‘Positive’ and ‘negative’=as defined by the American Society of Clinical
Oncology and College of American Pathologists recommendations for human epidermal growth factor receptor 2-testing in breast cancer.* ‘High’
and ‘low’ =as defined by each laboratory’s own reference data,®®1” with threshold generally in the range of 14-29%.4519-21

standard off-the-shelf laptop computers (Apple
Cupertino, CA, USA, and Dell Round Rock, TX,
USA). The Visiopharm integrator system software
utilizes a method for tissue classification based on
virtual double staining that automatically distin-
guishes tumor from stromal tissue. In short, each
biomarker slide is aligned with an adjacent 3 pm
slide stained with a pancytokeratin marker such as
CKkMNF 116. This enables exclusion of nonepithelial
cells that potentially express the biomarker in
question, that is, proliferating Ki67-positive lympho-
cytes. Thus, only cells that express cytokeratin are
eligible for detection of positivity or negativity for
the respective biomarker. Individual applications for
each biomarker then run the scoring of positive and
negative cells itself, with subcellular resolution*°
(Figure 1). Excellent reproducibility with this and
similar systems has been shown previously*'=° (see
specific statistics on reproducibility with the Visio-
pharm integrator system for each tested biomarker in
Supplementary Data).

For Ki67, we evaluated 2 fully automatic and 1
semi-manual DIA methods of scoring. The distinction
between fully automatic and semi-manual is that the
former needs only the manual actions of importing
digitally scanned slide images to the Visiopharm
integrator system software, a review of the automatic
alignment of biomarker and pancytokeratin slides,
and the push of a ‘start’ button, and the latter needs an
additional manual definition of a region of interest in
which the software runs the analysis. In further detail,
the scoring methods tested illustrate three different
approaches with regard to what tumor region and
number of cells to score:

1. The tumor’s invasive margin (semi-manual),

2. ‘hot spot’ of highest concentration of Ki67-
positive tumor cells (fully automatic), and

3. an average Ki67 positivity across the full tumor
cross-section (fully automatic). Further descrip-
tion of details in these scoring methods can be
found in the Supplementary Data.

Surrogate Subclassification

The assessments of ER, PR, HER2, and Ki67 by
both manual and DIA methods were combined

MODERN PATHOLOGY (2016) 29, 318-329

and compared for classification into surrogate
immunohistochemical subtypes for each tumor
using definitions recommended by international
international expert consensus®9:6:922.3046 (Tgble 2).

Statistical Methods

In addition to the cutoffs for -classification
provided by current guidelines, we evaluated cutoffs
for Ki67 into ‘high’ and ‘low’ proliferational
groups after adjustments by points on receiver
operating characteristics curves. For measurement
of concordance between manual/DIA surrogate
subclassifications to PAM50 gene expression assays,
Cohen’s « statistics were computed. For survival
analysis, we used the Kaplan—Meier method, and for
hazard of all-cause mortality the Cox regression
proportional hazard analysis. Likelihood ratio y?
(LR ) and change in LR y? (LR- Ay?) were computed
for an estimation of the individual scoring methods’
prognostic value and for the relative amount of
prognostic information of manual vs DIA Ki67
scores. For cohort 1, which still lacks long-term
survival data, Spearman’s rank-order correlations
were run to determine the relationship between Ki67
indexes vs Nottingham combined histologic grade
(Elston-Ellis*”), primary tumor diameter, and
axillary lymph node status. Differences with a
P<0.05 were considered significant. All P-values
were two sided.

The steps in the Visiopharm integrator system
workflow requiring manual input were performed by
a resident in training (corresponding author). All
were blinded to any previous data on biomarker
status, clinical and survival parameters, and gene
expression assay results.

All statistical analyses were performed using IBM
SPSS statistics version 22 (Armonk, NY, USA).

Results
Ideal Tumor Area Fraction

As described in the Materials and methods, the DIA
software evaluated here utilizes a method for
automatic exclusion of stroma, lymphocytes, and
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Table 3 Sensitivity, specificity, and misclassification percentage for each method of Ki67 scoring using the >20% cutoff as well as
adjusted cutoffs for separation of PAM50 Luminal B from A subtypes after analyses of receiver operating characteristics where maximum
sensitivity and specificity were given equal importance (receiver operating characteristics curves and area under the curve in

Supplementary Figures 4a and b)

Ki67 scoring method Sensitivity for PAM50 Luminal B vs A

Specificity for PAM50 Luminal B vs A

Proportion misclassified

DIA invasive margin

Cutoff >20% 84%

Cutoff >20.2%* 82%
DIA hot spot

Cutoff >20% 90%

Cutoff > 25.2%* 86%
DIA average

Cutoff >20% 60%

Cutoff >15.5%* 80%
Manual

Cutoff >20% 75%

Cutoff >22.5%* 74%

78% 20%
79% 20%
65% 24%
77% 19%
90% 31%
83% 19%
70% 30%
75% 29%

Manual scores retrieved from patient records.
* = Adjusted cutoffs.

100 — - PAMS0 subtype
M Luminal A
B Luminal B

80 |

60 —

as H :
L

0+

Ki67 index (%)

DIA Invasive margin  DIA Hot spot DIA Average Manual

Scoring method

Figure 2 Clustered box plot for Ki67 index (%) by each scoring
method in PAM50 Luminal A and B subtypes. Error bars represent
95% confidence interval. Circles represent outliers and asterisks
represent extremes. DIA, digital image analysis (n=214).

other nonepithelial tissue. Thus, the role of the
operator is to review the automatic steps of the
workflow and to, if desired, manually define regions
of interest for the software to process. The operator
also has the option to let the software run a fully
automatic identification of a tumor’s ‘hot spots’ or a
representation of the average biomarker positivity
across the full tumor cross-section. The results of the
scoring of ER, PR, HER2, and Ki67 are then
combined into a surrogate immunohistochemical
subclass for the tumor, in the very same way as it
is done after manual scoring of the same biomarkers.

To determine the area fraction to score for optimal
representation of the average Ki67 score across the
full tumor cross-section, a sample fraction study of

20 randomized cases from cohort 1 was conducted.
Here, it was determined that scoring 25% of the
tumor area was ideal considering variance
(R?=0.991) and time consumption: scoring 25%
took in average ~7min per slide on our standard
off-the-shelf laptop computers. Scoring smaller areas
induced higher variances and scoring larger areas
claimed more time: scoring 10% (R*=0.960) took
~ 3 min, scoring 50% (R?=0.998) took ~ 12 min, and
scoring 100% (R?=1) took ~24min per slide
(see further details of this sample fraction study in
Supplementary Data), the latter in stark contrast
to the scoring of relatively small invasive margin
or ‘hot spot’ tumor areas of >1000 cells that took
~1-2 min each.

Interobserver Concordance

For an analysis of interobserver concordance in
manual classification of Ki67 ‘high’ vs ‘low, a
subgroup including PAM50 Luminal A and B tumors
from cohort 2 (n=41) was assessed by three
independent board-certified pathologists. Applying
the >20% cutoff, interobserver concordance for
pathologist 1 and 2 scores of Ki67 clone 30-9 was
80% (k=0.57). Their concordance with pathologist 3
scoring of clone Mib-1 was 66% (x=0.10) and 66%
(k=0.17) for pathologist 1 and 2, respectively. Thus,
interobserver concordance was moderate when
pathologists scored the same Ki67 clone, and very
poor when they scored different Ki67 clones (see
details in Supplementary Data). This is, as far as
comparisons are possible, clearly inferior to the
previously published intra- and inter scanner, reagent,
and operator reproducibility with the Visiopharm
integrator system application for Ki67 scoring
(k=1.00, presented in the Supplementary Data).
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Figure 3 Comparison of manual vs digital image analysis (DIA)
surrogate immunohistochemical subtype concordance to PAM50
gene expression assays. Concordance specified as proportion (%)
of cases classified into identical subtypes (Luminal A, Luminal B,
HER2, or Basal) with manual or DIA immunohistochemical
methods and PAMS50. Data on ER, PR, HER2, and Ki67 scores
from patient records were combined for manual immunohisto-
chemical subtype (according to Table 2). DIA Ki67 scores on full
sections were combined with DIA ER, PR, and HER2 scores of the
same tumors on tissue microarray. Cutoffs for Ki67 ‘high’ after
analysis of receiver operating characteristics. Gray bars indicate
results of manual scores, and white bars indicate DIA methods
(n=279). DIA ER, PR, and HER2 on tissue microarrays+DIA Ki67
invasive margin immunohistochemical subtype vs PAMS50
subtype concordance: 76.6%. Cohen’s x: 0.510. DIA ER, PR, and
HER2 on tissue microarrays+DIA Ki67 hot spot immunohisto-
chemical subtype vs PAMS50 subtype concordance: 73.3%.
Cohen’s «: 0.469. DIA ER, PR, and HER2 on tissue microarrays
+DIA Ki67 Average immunohistochemical subtype vs PAMS50
subtype concordance: 76.0%. Cohen’s x: 0.502. Manual immuno-
histochemical subtype vs PAM50 subtype concordance: 71.1%.
Cohen’s k: 0.453. Manual* immunohistochemical subtype with a
classical cutoff of >20% for Ki67 ‘high’ vs PAM50 subtype
concordance: 65.1%. Cohen’s x: 0.392.

Thresholds for Ki67 ‘High’ vs ‘Low’

With a >20% cutoff for Ki67 ‘high’ in all PAMS50
Luminal A and B tumors from both cohorts (n=214),
DIA produced distinctions that matched or were more
accurate than the manual method, depending on what
tumor region was scored. Individual analyses of
receiver operating characteristics for each scoring
method where maximum sensitivity and specificity
for the PAM50 Luminal B subtype were given equal
importance (see Supplementary Figures 4a and b)
yielded cutoffs ranging from >15.5 to 25.2% in this
subset. When applying these adjusted cutoffs, all DIA
methods outperformed manual scores in terms of
sensitivity and specificity for the Luminal B subtype.
It is noteworthy that the method aiming for a
representation of the average Ki67 score across the
full tumor section had the lowest cutoff adjusted
to receiver operating characteristics of >15.5%,
reflecting a sampling without focus on highly
proliferative areas (Table 3).
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The difference of Ki67-scores in Luminal A and
Luminal B PAM50 subtypes was significant (P < 0.002)
by independent-samples Mann—Whitney U-tests in all
evaluated methods, manual and DIA (Figure 2).

In 67 out of the 279 cases in cohort 1 and 2 combined,
(24%), the ‘hot spot’ area of highest Ki67 intensity was
within 1 mm of the tumor’s invasive margin.

Subclassification

To determine which of manual or DIA-generated
biomarker scoring outcomes that best corresponded
to PAM50 gene expression profiles, manual and
DIA scores of Ki67, ER, PR, and HER2 in cohort
1 (n=195) were combined into surrogate
immunohistochemical subtypes according to the
specifications in Table 2. For all Ki67 scoring
methods, both manual and DIA, we wused
full-section slides and the cutoffs adjusted to receiver
operating characteristics for ‘high’ vs ‘low’ described
above. With DIA, we scored ER, PR, and HER2 on
tissue microarrays only, whereas the patient records
contain data of manual scoring on full sections for all
biomarkers.

Still, all tested DIA methods exceeded manual
immunohistochemical subtype concordance and
Cohen’s x agreement with PAM50 gene expression
assays with 2.2 to 5.5 percentage points (Figure 3).

If Luminal cases were to be grouped together
without dichotomization into A and B subtypes,
thereby omitting Ki67 as a factor in surrogate
immunohistochemical subtype (see details in
Supplementary Data), concordance increases further
to up to 95.3% (k=0.533) for DIA and to 87.4%
(k=0.498) for manual scoring. This gain in
concordance is however naturally at the expense of
the prognostic value of information on ‘high’ vs ‘low’
proliferational activity. It is also points to the fact
that accuracy in assessments of ER, PR, and HER2 is
generally excellent, with DIA leading to slightly
higher concordance to gene expression assays than
manual biomarker scoring (details in Supplementary
Data).

Prognostication

As the first cohort analyzed here (n=195) still
lacks long-term survival data, clinically reported
Nottingham combined histologic grade, number of
axillary lymph node metastases (N), and largest
primary tumor diameters (J) were used as
prognostic  surrogates. Spearman’s rank-order
correlation was run to determine the relationship
between Nottingham combined histologic grade and
Ki67 index measured by DIA of the tumors’ invasive
margins, ‘hot spots’ and full tumor cross-section
averages, as well as by the manual method used in
current clinicopathological routine. This showed a
positive and statistically significant correlation for
all methods, with the strongest correlation for DIA



LR -Ay? vs manual
method (P)
1.99 (0.158%)

4.043 (0.044)
1.868 (0.1729)
2.018 (0.155%)
0.348 (0.555%)
0.005 (0.942?%)

LR -Ay? vs manual

method (P)
0.062 (0.803%)

3.57 (0.059%)

LR /* (P)
4.488 (0.034)
7.215 (0.007)
4.129 (0.042)

6.35 (0.012)
1.953 (0.162%)
3.759 (0.053%)
1.188 (0.276%)
1.679 (0.195%)

LR »* (P)

2.23 (0.065%)

Hazard ratio for all-cause
mortality Ki67 ‘high’ vs ‘low’ (P)
2.44 (0.038)
3.00 (0.011)
2.31 (0.047)
3.20 (0.012)
1.56 (0.1633)
1.79 (0.0733)
1.56 (0.1509)
2.12 (0.029)
Hazard ratio for all-cause
mortality Luminal B vs A (P)

Mean overall survival
Ki67 ‘low’, years (95% CI)
15.1 (13.2-17.1)
15.2 (13.4-17.1)
15.3 (13.5-17.1)
16.2 (14.7-17.7)
12.8 (10.9-14.7)
13.4 (11.7-15.2)
13.3 (11.6-14.9)
14.0 (12.3-15.8)
Mean overall survival
Luminal B (95% CI)

10.6 (8.1-13.1)

13.2 (10.9-15.5)

13.2 (10.6-15.8)

13.0 (10.3-15.8)

13.0 (10.3-15.8)

12.8 (10.3-15.3)

11.1 (9.3-12.9)

10.7 (9.0-12.4)
Mean overall survival
Luminal A (95% CI)

10.7 (8.8-12.5)

Mean overall survival
10.8 (9.0-12.5)

Ki67 ‘high’, years (95% CI)

Population (n)
likelihood ratio y* change.

Luminal A and B subtypes

All PAM50 subtypes (84)
only (41)

PAM50 Luminal A and B
subtypes only (41)
Population (n)

likelihood ratio y% LR — Ay?

Table 4 Mean overall survival and 95% confidence interval for Ki67 ‘high’ and ‘low’ classified by manual and each digital image analysis method in PAM50 Luminal A and B subtypes

only (top), all PAM50 subtypes (middle), as well as for PAM50 Luminal A and B subtypes (bottom, italic)

Prognostic value as LR 42 and relative prognostic value of digital image analysis/PAMS50 to manual Ki67 scores as LR — Ay?. Cutoffs adjusted to receiver operating characteristics.

Digital image analysis, invasive
margin

Digital image analysis, hot spot
Digital image analysis, average
Digital image analysis, invasive
Digital image analysis, hot spot
Digital image analysis, average
@Not significant on the 0.05 level.

margin
Gene expression assay

Ki67 scoring method

Manual
Manual
PAMS50
LR 42
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of full tumor cross-section averages (rs=0.575,
P <0.001) and the weakest for the manual scores
(rs=0.459, P<0.001). Ki67 index was however not
significantly correlated to neither N nor @ for
any method, manual or DIA (see details in
Supplementary Tables 9 and 10).

For the second cohort, we compared the
differences in mean overall survival and Cox
regression hazard ratios for all-cause mortality for
patients with tumors classified into Ki67 ‘high’ and
‘low’” with each Ki67 scoring method. Mean survival
years were significantly higher and hazard ratios
significantly lower for patients classified into the
Ki67 ‘low’ vs ‘high’ groups by all scoring methods in
the subgroup with PAM50 Luminal A and B tumors.
When including all the cohort patients regardless of
PAM50 subtype, differences in mean survival
between Ki67 ‘low’ vs ‘high’ was generally lower
for all scoring methods and hazard ratios generally
not significant (Table 4 and Figure 4).

When each of the Ki67 scoring methods were
tested for its individual prognostic value by Cox
regression LR y? in the subgroup with PAMS50
Luminal A and B tumors only (n=214), all DIA
methods as well as the manual method contributed
with significant information on overall survival with
the highest LR »? for DIA of Ki67 in ‘hot spots.’
However, when this analysis was repeated for all the
patients in the cohort regardless of PAM50 subtype,
none contributed with significant information on
overall survival.

Finally, each DIA method was added separately to
manual Ki67 scoring to determine whether they
added any prognostic value. LR- Ay? was used to
measure and compare the relative amount of
information. Here, DIA of Ki67 in ‘hot spots’ added
significantly more prognostic information in the
subgroup with PAM50 Luminal A and B tumors
only (LR —Ay? 4.043, P=0.044), whereas LR — Ay?
for the other DIA methods were not significantly
better (Table 4).

Discussion

In this study, all tested DIA methods of scoring Ki67
outperformed even our most accurate pathologist’s
manual scores in terms of sensitivity and specificity
for the Luminal B subtype. When comparing
DIA vs manual immunohistochemical surrogate
concordance and Cohen’s x agreement with PAM50
gene expression assays, all tested DIA methods were
superior to the manual method.

Furthermore, the manual and DIA methods
essentially matched each other for prognostication
of hazard ratio for all-cause mortality in tumors with
a ‘high’ vs ‘low’ Ki67 index. When histological grade
was used as a prognostic surrogate, Spearman’s
rank-order correlations showed a positive and sig-
nificant correlation for both manual and DIA
methods, with the strongest correlation for the DIA
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Figure 4 Kaplan—Meier curves for overall survival of cases classified into Ki67 ‘low’ (dark) and ‘high’ (light) with digital image analysis
(DIA) and manual methods using cutoffs adjusted to receiver operating characteristics. Left: PAM50 Luminal A and B subtypes only
(n=41). Right: All PAM50 subtypes (n=284). 95% Confidence interval in Table 4.
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method giving an automatic representation of the
average Ki67 positivity across the full tumor
cross-section.

When the prognostic value of a Ki67 index
determined by each of the manual and DIA scoring
methods was tested, all contributed with significant
information on overall survival in the PAMS50
Luminal A and B subtype tumors, with the highest
LR y? for DIA of Ki67 in ‘hot spots’. Furthermore, this
method added significantly more prognostic
information than the manual scoring method in the
same subgroup. This was however not the case when
we included all PAM50 subtypes, confirming that
the prognostic role for Ki67 is mainly related to the
Luminal A and B subtypes.

DIA of Ki67 positivity did yield different scores
depending on what tumor area and number of cells
was in focus of the analysis. This however did not
induce any major differences in performance of
subclassification or prognostication, possibly except
by DIA of Ki67 in ‘hot spots’ that had a slightly
better prognostic value. It should nevertheless be
emphasized that in a quarter of the tumors in
this study, the ‘hot spot’ was within 1 mm of the
tumor’s invasive margin, a fact that should be taken
into consideration in the event of future studies
of what tumor regions have the highest metastatic
potential.

In the tissue microarray cohort (reported in
Supplementary Data), DIA matched the pathologist’s
manual assessments of all biomarkers for a quite low
concordance to gene expression assays and poor
sensitivities and specificities for the Luminal B
subtype.

As a consequence of these results, we cannot
recommend therapeutic decisions or prognostic
information based on Ki67 scored on tissue
microarrays when full sections are available. In
analogy with consensus recommendations, we also
found good reasons to support the notion that the
distinction of Ki67 into ‘high’ and ‘low’ groups
should be done only after cutoffs are adjusted to each
laboratory’s own reference data and the scoring
method used.

One could argue that DIA is a complicating
development in biomarker scoring that may not be
sufficiently user friendly for pathologists with many
years of experience with manual biomarker scorings.
Substantial investments in digital scanning capacity,
data storage, software, and training are required
at each institution before effective use of the
technology can be expected. With a perhaps
tempting but excessive automation, DIA could also
withdraw direct control over the assessment in terms
of what tumor areas and which cells are being
scored, potentially leading to dire consequences to
patients.

Furthermore, DIA may in itself be a source
of wvariance. Different DIA approaches will
inherently classify tumor, nuclei, and membranes
differently, and poor performance of the algorithm’s

Digital image analysis in breast cancer
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identification of tumor vs nontumor tissue as well as
cellular components would be a significant source
of error.

To minimize the variance contributed by the DIA
software used here, the manufacturer has chosen a
single well-tested set of algorithms adherent to
Conformité Européenne In Vitro Diagnostics. These
have previously been validated on data from
multiple sites comprising thousands of tumor
samples to ensure that the variance that DIA
contributes is kept at a minimum?*’(see specific
statistics on reproducibility with Visiopharm
integrator system for each tested biomarker in
Supplementary Data).

When interpreting the results of any method’s
concordance to gene expression assays, one should
also note that the individual tumor’s PAM50 subtype
is based on the average gene expression profile in the
very piece of tumor tissue from which RNA was
extracted. Thus, presence of substantial intratumor
heterogeneity could potentially lead to uncertainty
in subtype assignment and consequentially affect
the immunohistochemical vs PAMS50 subtype
concordance. In an ongoing study we seek to shed
clarity to this subject (unpublished). So far,
our preliminary data indicate that intratumor
heterogeneity in terms of PAMS50 subtype is quite
limited and not a common occurrence. Moreover,
manual vs DIA immunohistochemical subtype
concordance to PAM50 assays would be influenced
to an equal degree by the presence of intratumor
heterogeneity. We consequently believe that it is not
likely to affect the results and conclusions of this
study in any significant way.

When summarizing this study, manual assessment
of the biomarkers ER, PR, HER2, and Ki67, with
an emphasis on the latter, was in most aspects
an inferior alternative to DIA. This implicates that
with the manual methods of scoring these
biomarkers currently used, an avoidable high
proportion of patients could receive either
potentially harmful treatments such as cytotoxic
chemotherapy without benefit or be excluded from
the beneficial treatments that a better diagnostic
method would indicate.

This is perhaps especially relevant as DIA in many
ways is already an accessible, simple option with
superior reproducibility. A growing number of
ready-to-use systems are offered on the market
including the one tested here. Combined with the
increasingly efficient and less expensive digital glass
slide scanners, digital pathology is set to challenge
manual biomarker scoring for the method of choice
for the time being until gene expression assays or
their equivalent are universally available. In addition
to its competitive performance, DIA also provides an
opportunity to reduce time consumption for
pathologists and allocate precious resources to more
qualified tasks. In the fully automatic scoring
methods described here, manual input and thereby
the sampling bias is reduced to a minimum. An
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operator of the Visiopharm integrator system even has
the option to define regions of interest on pancytoker-
atin slides only, thereby avoiding subjective assess-
ments of biomarker positivity in different tumor areas
altogether. This implicates that an approach like DIA
of the full tumor cross-section average or ‘hot spots’
could allow for biomedical scientists or other labora-
tory personnel with only a basic understanding of
histopathology and immunohistochemistry to manage
surrogate immunohistochemical subclassification in
breast cancer.

Accordingly, we conclude that DIA is already a
viable and competitive, if not superior, alternative for
biomarker testing in breast cancer. We strongly
encourage further studies to confirm the results found
here in larger populations to facilitate implementation
and to evaluate the performance of DIA in clinical
use. It is with great anticipation that we look forward
to the continued technological progress in this matter.
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