

ARTICLE

Received 2 Jul 2010 | Accepted 19 Oct 2010 | Published 16 Nov 2010

DOI: 10.1038/ncomms1112

Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal

Hiromichi Ohta^{1,2}, Yukio Sato³, Takeharu Kato³, SungWng Kim⁴, Kenji Nomura⁴, Yuichi Ikuhara^{3,5} & Hideo Hosono⁴

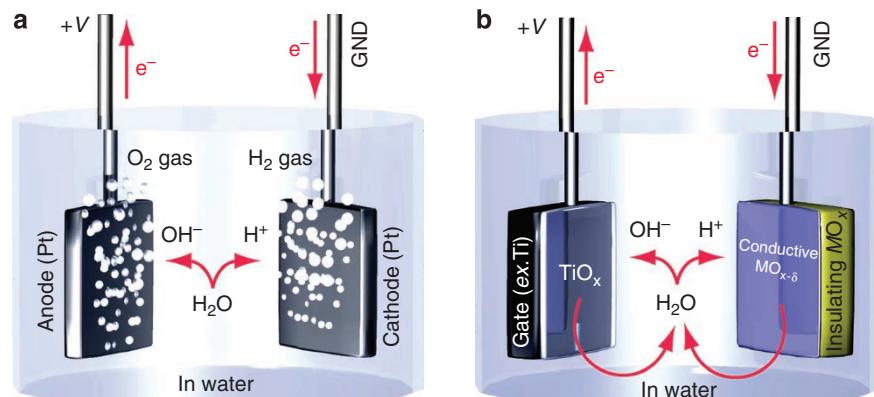
Water is composed of two strong electrochemically active agents, H^+ and OH^- ions, but has not been used as an active electronic material in oxide semiconductors. In this study, we demonstrate that water-infiltrated nanoporous glass electrically switches an oxide semiconductor from insulator to metal. We fabricated a field-effect transistor structure on an oxide semiconductor, $SrTiO_3$, using water-infiltrated nanoporous glass—amorphous $12CaO\cdot7Al_2O_3$ —as the gate insulator. Positive gate voltage, electron accumulation, water electrolysis and electrochemical reduction occur successively on the $SrTiO_3$ surface at room temperature. This leads to the formation of a thin (~ 3 nm) metal layer with an extremely high electron concentration ($10^{15}\text{--}10^{16}\text{ cm}^{-2}$), which exhibits exotic thermoelectric behaviour. The electron activity of water as it infiltrates nanoporous glass may find many useful applications in electronics or in energy storage.

¹ Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan. ² PRESTO, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda, Tokyo 102-0075, Japan. ³ Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya 456-8587, Japan. ⁴ Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan. ⁵ Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-8656, Japan. Correspondence and requests for materials should be addressed to H.O. (email: h-ohta@apchem.nagoya-u.ac.jp).

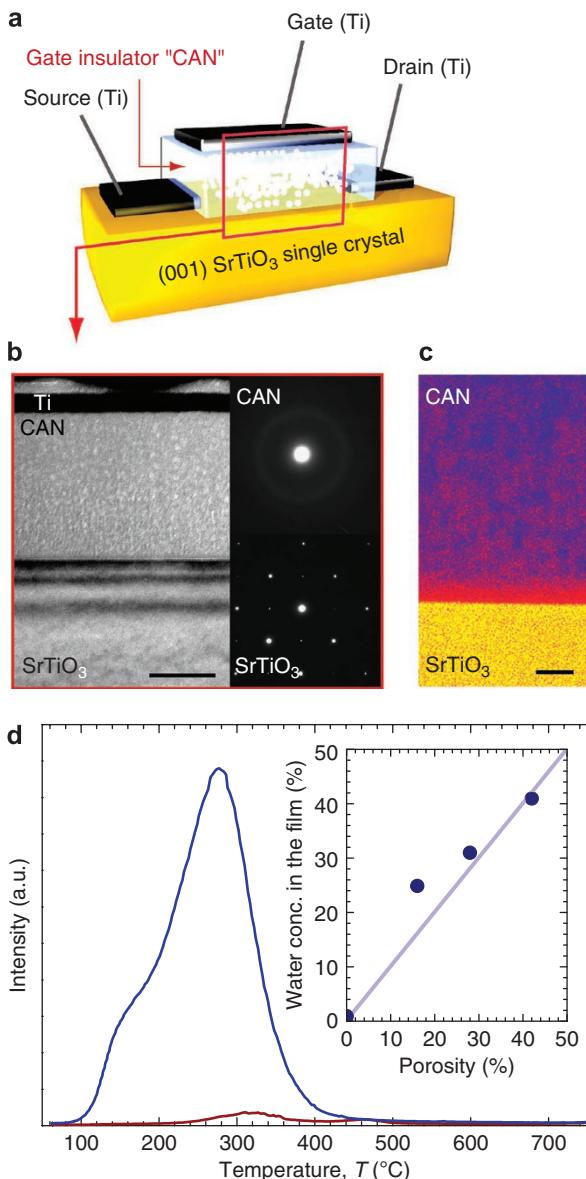
Water has not been utilized as an active electronic material though water has been widely applied in industry as a coolant (radiators), solvent (batteries) and pressure medium (hydroelectric power generation). We have previously aimed to exploit the electrolysis of water¹. Although the electrical conductivity of pure water is extremely low ($\sim 0.055 \mu\text{S cm}^{-1}$ at 25°C)², ionization of H^+ and OH^- ions occurs when the bias voltage ($>1.23 \text{ V}$) is applied between two metallic electrodes immersed in water, as shown in Figure 1a. The ions are then attracted to the cathode and anode. Finally, H_2 and O_2 gases are generated on the cathode and anode, respectively, via the electron transfer on the electrode surface. As H^+ and OH^- ions, which are strong reducing/oxidizing agents for most oxide semiconductors³⁻⁸, are simultaneously produced in water electrolysis, one may expect that the electrical conductivity of an oxide semiconductor, which is strongly dependent on oxygen non-stoichiometry, can be modulated by utilizing the redox reaction between H^+/OH^- ions and the oxide surface. However, water electrolysis and the redox reaction do not take place, because no electric field can be applied on the insulating oxide surface in the first place. Thus, the surface of the oxide must be conductive, as schematically shown in Figure 1b.

We have found that water-infiltrated nanoporous glass overcomes this problem and switches an oxide semiconductor from an insulator to a metal. Electron accumulation, water electrolysis and redox take place successively on an oxide surface at room temperature (RT), leading to the formation of a thin metal layer on the oxide. We have fabricated a field-effect transistor (FET) structure with source, drain and gate electrodes on an insulating oxide, using water-infiltrated nanoporous glass as the gate insulator. First, the insulating oxide surface becomes slightly conductive by applying the gate voltage because of electrostatic charge accumulation. Then, water electrolysis occurs between the gate and the oxide surface. Finally, a redox reaction takes place between H^+/OH^- ions and the oxide surface. As a result, a thin metal layer is formed on an insulating oxide.

The key material to make the best use of the electron activity of water is nanoporous glass. We chose amorphous $12\text{CaO}\cdot7\text{Al}_2\text{O}_3$ ($a\text{-C12A7}$) with a nanoporous structure for this purpose. C12A7 is an abundant and environmentally benign material. Crystalline C12A7 becomes semiconducting⁹ or metallic^{10,11} when the clathrated free oxygen ions (O^{2-}), which are incorporated into the cage structure ($\sim 0.4 \text{ nm}$ in diameter), are removed by chemical reduction treatment. On the other hand, 'amorphous' C12A7 is a good electrical insulator, because amorphous C12A7 does not have a cage structure, we therefore ruled out the possibility of electrical conductivity of an


amorphous C12A7 film. As C12A7 can be hydrated easily¹², it is used commercially as a major constituent of aluminous cement. In 1987, Hosono and Abe¹³ found that a large amount of bubbles was generated in an $a\text{-C12A7}$ glass, when C12A7 melt was quenched under high oxygen pressure. In the present study, we develop a method to fabricate $a\text{-C12A7}$ film with nanoporous structure (CAN, hereafter) by pulsed laser deposition.

In this study, we show that water-infiltrated CAN electrically switches an oxide semiconductor from insulator to metal, using a CAN-gated FET structure on a SrTiO_3 single crystal (Fig. 2a) as a proof of concept. Although SrTiO_3 is a wide bandgap ($\sim 3.2 \text{ eV}$) insulator, it becomes n -type conducting $\text{SrTiO}_{3-\delta}$ by appropriate reducing treatments⁵. Conducting SrTiO_3 , especially when it is a two-dimensional (2D) conductor^{14,15}, is of great importance as an active material for future electronic devices¹⁶, because it has several potential advantages over conventional semiconductor-based electronic materials, such as transparency¹⁷, giant magnetoresistance¹⁸ and giant thermopower¹⁹. On applying positive gate voltage to the CAN-gated SrTiO_3 FET, electron accumulation, water electrolysis and electrochemical reduction occur successively on the SrTiO_3 surface at RT. This leads to the formation of a thin ($\sim 3 \text{ nm}$) metal layer with an extremely high electron concentration ($10^{15}\text{--}10^{16} \text{ cm}^{-2}$), which exhibits exotic thermoelectric behaviour.


Results

Water-infiltrated nanoporous glass (CAN). The trilayer structure composed of Ti (20 nm)/CAN (200 nm)/ SrTiO_3 is clearly observed in the cross-sectional transmission electron microscopic (TEM) image of the CAN-gated SrTiO_3 FET (Fig. 2b). Many brighter contrasts (diameter $\sim 10 \text{ nm}$) are seen throughout the CAN region. Furthermore, several dark contrasts with a diameter $< 10 \text{ nm}$ are observed in the Z-contrast, high-angle, annular dark-field scanning TEM (STEM) image of the CAN film (Fig. 2c). Judging from these TEM/STEM images, high-density nanopores with a diameter of $< 10 \text{ nm}$ are incorporated into the CAN film.

We subsequently measured thermal desorption spectrum (TDS) of the CAN films to detect weakly bonded chemical species in the nanopores. Most of the desorbed species were H_2O ($m/z = 18$, where m/z indicates the molecular mass to charge ratio; Fig. 2d). The amount of H_2O up to 400°C was estimated to be $1.4 \times 10^{22} \text{ cm}^{-3}$, which corresponds to 41%. The bulk density of the CAN film was $\sim 2.1 \text{ g cm}^{-3}$, evaluated by grazing incidence X-ray reflectivity (Supplementary Fig. S2), which corresponds to 72% of fully dense $a\text{-C12A7}$ (2.92 g cm^{-3})²⁰. From these results, we judged that moisture

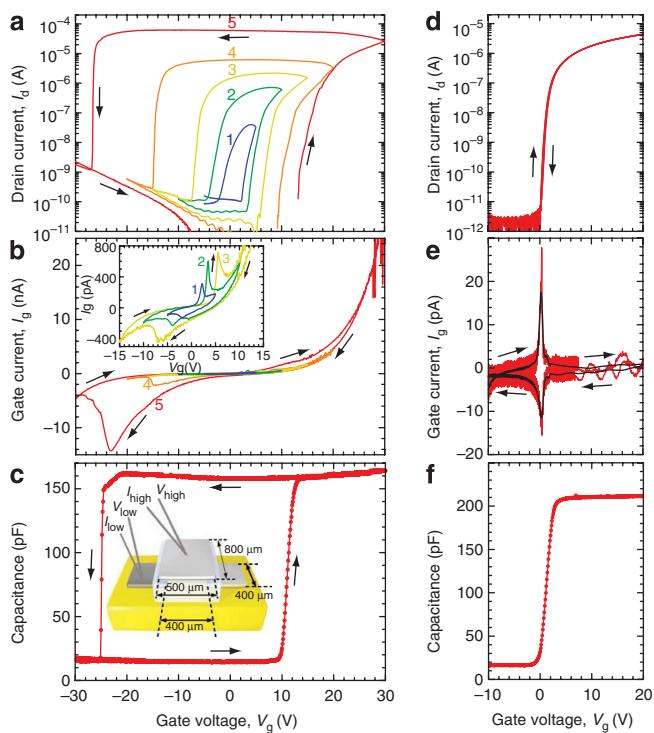


Figure 1 | Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal. (a) Simple water electrolysis with two Pt electrodes as the cathode and anode immersed in water. H^+ and OH^- ions, which are generated by the electrolysis, become H_2 and O_2 gases on the anode and cathode, respectively. (b) Water electrolysis with an insulating oxide MO_x , with a slightly conductive surface $\text{MO}_{x-\delta}$. Similar to a, H^+/OH^- ions are attracted to the $\text{MO}_{x-\delta}$ surface, leading to the redox reaction between H^+/OH^- ions and the $\text{MO}_{x-\delta}$ surface. GND, ground.

in the air (humidity 40–50%) would infiltrate the CAN film most likely due to the capillary effect, hence, nanopores in the CAN film were filled with water.

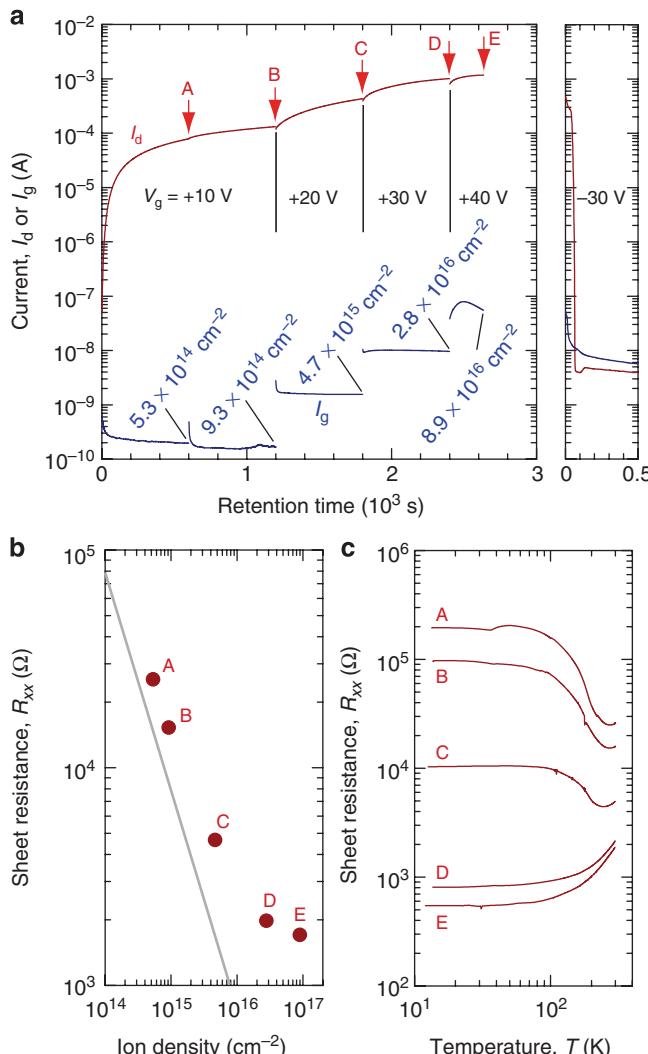

Field-induced water electrolysis. We then measured the electron transport properties of the CAN-gated SrTiO₃ FET at RT. Figure 3 summarizes (a) drain current (I_d) versus gate voltage (V_g) curves,

Figure 2 | The CAN-gated SrTiO₃ FET. (a) A schematic illustration of the CAN-gated SrTiO₃ FET. (b) Cross-sectional TEM image of the CAN-gated SrTiO₃ FET (left panel). Scale bar is 100 nm. Trilayer structure composed of Ti/CAN/SrTiO₃ is observed. Large amount of light spots are seen in the whole CAN region. Broad halo is observed in the selected area electron diffraction pattern of CAN, and diffraction pattern from SrTiO₃ single crystal is also shown below (right panel). (c) Z-contrast, high-angle, annular dark-field STEM image of the CAN/SrTiO₃ interface. Scale bar is 20 nm. Nanopores with diameter <10 nm appear dark. (d) TDS spectrum of water ($m/z = 18$ H₂O) in the CAN film (blue). The amount of H₂O up to 400 °C was estimated to be $1.4 \times 10^{22} \text{ cm}^{-3}$ ($= 0.41 \text{ g cm}^{-3}$, ~41%). TDS spectrum in the dense a-C12A7 film is shown for comparison (red, 0.009 g cm⁻³). The water concentration increases monotonically with an increase in the porosity of the CAN films (the inset).

(b) gate current (I_g) versus V_g curves, and (c) capacitance (C) versus V_g curve of the CAN-gated SrTiO₃ FET. Corresponding properties of the dense a-C12A7-gated SrTiO₃ FET²¹ (d, e, f) were also measured for comparison. Both the channel length, L , and the channel width, W , were 400 μm . Dielectric permittivity (ϵ_r) of a-C12A7 was 12²¹. The gate voltage sweeps were performed in numerical order (for example: 1: $-5 \text{ V} \rightarrow 0 \text{ V} \rightarrow +5 \text{ V} \rightarrow 0 \text{ V} \rightarrow -5 \text{ V}$). The I_d versus V_g curves (a) show large anticlockwise hysteresis, indicating movement of mobile ions²², though very small clockwise hysteresis (~0.5 V) is seen in the dense a-C12A7-gated SrTiO₃ FET (d). Although very small, I_g (~2 pA) is observed in the dense a-C12A7-gated SrTiO₃ FET (e), whereas the I_g of the CAN-gated SrTiO₃ FET (b) increases exponentially up to 20 nA with V_g , suggesting that mobile ions transport electronic charge. The C versus V_g curve (c) of the CAN-gated SrTiO₃ FET shows large anticlockwise hysteresis loop. The maximum C is $\sim 160 \text{ pF}$, $\sim 76\%$ of the value for the dense a-C12A7-gated SrTiO₃ FET ((f) $\sim 210 \text{ pF}$), consistent with the fact that the volume fraction of dense a-C12A7 part in the CAN film is $\sim 72\%$.

We also observed a clear pinch-off and saturation in I_d at low V_g region (see Supplementary Fig. S3), indicating that the operation of this FET conformed to standard FET theory at low gate voltage. Thus, we concluded that first the insulating SrTiO₃ surface became slightly conductive with gate voltage because of the

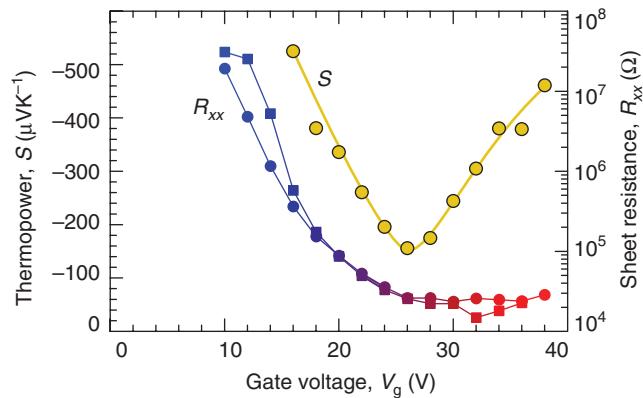


Figure 4 | A redox reaction switches an insulating SrTiO_3 to metal.

(a) Retention time dependences of I_d and I_g for the CAN-gated SrTiO_3 FET at several V_g at RT ($V_d = +2$ V). The I_d increases gradually with retention time at constant V_g . Ion density, which is the retention time integral of I_g , reaches $\sim 9 \times 10^{16} \text{ cm}^{-2}$ when $V_g = +40$ V is applied. (b) R_{xx} versus ion density for the state A-E marked in a at RT. The grey line (slope = -1) indicates $R_{xx} = (e \cdot n_{xx} \cdot \mu)^{-1}$, where n_{xx} and μ are ion density, and μ_{FE} ($0.8 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), which was obtained as in Supplementary Figure S4b. (c) Temperature dependence of R_{xx} for the state A-E marked in Figure 4a.

electron charge that was accumulated at the SrTiO_3 surface by pure electrostatic effect.

To clarify the role of water in the electrical transport properties, we measured the I_d versus V_g characteristics of the CAN-gated SrTiO_3 FET at 0°C using a Peltier cooler, because H^+ and OH^- ions cannot move through ice (Supplementary Fig. S4). The device does not show such large anticlockwise hysteresis at 0°C. Although the maximum C increased from $\sim 160 \text{ pF}$ (25°C) to $\sim 240 \text{ pF}$ (0°C), I_d at $V_g = +10$ V decreased from $\sim 5 \mu\text{A}$ (25°C) to $\sim 1 \mu\text{A}$ (0°C), most likely because of the fact that water in the CAN acts as a simple gate dielectric at 0°C ($\epsilon_{r,25^\circ\text{C}} \sim 78$, $\epsilon_{r,0^\circ\text{C}} \sim 88$)²³. The field-effect mobility (μ_{FE}) value of the FET at 0°C is $\sim 0.8 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, which is comparable to that of the dense a-C12A7-gated SrTiO_3 FET ($\sim 2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), obtained from $\mu_{\text{FE}} = g_m((C \times V_d)/(W \times L))^{-1}$, where g_m was the transconductance $\partial I_d / \partial V_g$. We also measured Hall mobility (μ_{Hall}) of a CAN-gated SrTiO_3 FET after several V_g applications (metallic state) and obtained μ_{Hall} values of $2.3\text{--}2.5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, which is approximately

Figure 5 | Thermopower and sheet resistance as a function of applied V_g .

Novel thermopower behaviour: V-shaped turnaround of S is seen, though R_{xx} (circle: before S measurement, square: after S measurement) decreases gradually as V_g increases, probably due to transition of electronic nature from 3D to 2D in the interface region.

three times larger than the μ_{FE} value ($\sim 0.8 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$). These results clearly indicate that H^+ and OH^- ions in the CAN are the main contributors to electron transport at RT.

Insulator-to-metal switching. We then observed the electrochemical redox reaction of SrTiO_3 . Figure 4a shows the changes of I_d and I_g during V_g sweep from +10 to +40 V, as a function of retention time. The I_d gradually increases with retention time. The rate of I_d increase grows with V_g . The I_g also increases with V_g . The I_d reaches $\sim 1 \text{ mA}$ at $V_g = +40$ V. The I_d decreases drastically when negative V_g of -30 V is applied.

The sheet resistance (R_{xx}) at several points (A-E) was plotted as a function of ion density, which was obtained by $I_g \times t$ (Fig. 4b). The observed values were close to the grey line, which is $R_{xx} = (e \cdot n_{xx} \cdot \mu)^{-1}$, where n_{xx} and μ are ion density, and μ_{FE} ($0.8 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) was obtained as in Supplementary Figure S4b, suggesting that carrier electrons were generated as a result of the electrochemical reduction of SrTiO_3 . Although samples A-C exhibit insulating $R_{xx} - T$ behaviour, D and E exhibit metallic $R_{xx} - T$ behaviour (Fig. 4c).

Exotic thermopower. We have also shown that the metal layer on the SrTiO_3 in the FET exhibits novel thermoelectric behaviour: V-shaped turnaround of S is seen, although R_{xx} decreases gradually as V_g increases (Fig. 5). As we have reported previously, $|S|$ value enhancement of electron-doped SrTiO_3 can be observed when the conducting layer thickness is $< \sim 3 \text{ nm}$ ¹⁹, probably because of 2D effect²⁴, where the thermal de Broglie's wavelength of conduction electrons in SrTiO_3 is $\sim 6 \text{ nm}$ ²⁵. We therefore expected that 2D $|S|$ can be observed at high V_g , because the layer thickness may become thinner.

When the V_g was $< +26$ V, $|S|$ value gradually decreased with V_g . Similar $|S|$ behaviour, which can be analysed using simple three-dimensional (3D) electron diffusion theory, was also observed in the dense a-C12A7-gated SrTiO_3 FET, as shown in Supplementary Figure S5. Thus, we used the 3D electron diffusion theory²⁶ to analyse the layer thickness. The 3D electron concentrations (n_{3D}) at $V_g = +16$, $+20$ and $+26$ V were estimated to be $\sim 1.5 \times 10^{19}$, 1.5×10^{20} and $\sim 1.1 \times 10^{21} \text{ cm}^{-3}$, respectively. The n_{xx} values at $V_g = +16$, $+20$ and $+26$ V, which can be calculated using R_{xx} and μ_{FE} ($0.8 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), are 1.4×10^{13} , 9.0×10^{13} and $3.3 \times 10^{14} \text{ cm}^{-2}$, respectively, suggesting that the $\text{SrTiO}_{3-\delta}$ thicknesses ($\sim n_{xx}/n_{3D}$) are ~ 9 , 6 and 3 nm , respectively, confirming that the observed S obeys simple 3D electron diffusion theory. On the contrary, when the $V_g > 26$ V was applied, the $|S|$ value increased. The conducting layer thickness

may be <3 nm, the observed upturn at $V_g > 26$ V is most likely due to 2D effect^{19,24}.

Discussion

The present CAN-gated SrTiO_3 FET has several merits compared with established methods such as thermal reduction⁵, ion irradiation^{17,27}, thin film growth^{14,15,17,18} and simple FET^{21,28}, which are often utilized to switch an insulating SrTiO_3 to a metal. This is because the current method allows a metal layer to be easily fabricated with extremely low energy. First, required electricity is extremely less ($\sim 50 \mu\text{W cm}^{-2}$ for 'D' in Fig. 4) compared with that of thermal reduction ($\sim \text{kW}$) and ion implantation ($\sim \text{W cm}^{-2}$). Second, an extremely thin (~ 3 nm) metal layer, which exhibits exotic thermopower (Fig. 5), can be fabricated. Normally, such thin layers must be fabricated through complicated vapour phase epitaxy methods, such as pulsed laser deposition and molecular beam epitaxy. Third, our CAN-gated SrTiO_3 FET exhibits a nonvolatile metal or highly conductive/insulator transition (Figs 3a and 4a and Supplementary Fig. S6), because a reversible redox reaction is utilized in addition to the field effect.

Although several efficient gating methods using liquid electrolytes have been proposed very recently^{28–31}, we would like to argue that the present water-infiltrated nanoporous glass 'CAN' is truly superior to the liquid-based gate dielectrics. Liquid electrolytes including 'gel' would be very useful to electrostatically accumulate carriers at the transistor channel by applying rather low V_g (a few volts) using their huge capacitance. However, they would not be suitable for practical applications without sealing because of liquid leakage problem. Our 'CAN' is a chemically stable rigid glassy solid with a higher decomposition voltage, showing excellent adhesion with chemically robust oxide such as SrTiO_3 surface and no liquid (water) leakage occurs. Carrier injection/discharge can be controlled by V_g as redox reaction, which occurs at the interface of H^+ or OH^- /semiconductor, is utilized for carrier injection/discharge, though rather high V_g (several ten volts) should be required for Redox reaction. Further, we observed novel thermopower behaviour: V-shaped turnaround, probably due to transition of electronic nature from 3D to 2D in the interface region, as the FET could be operated at high V_g . These clearly indicate the effectiveness of our 'CAN'.

In summary, we have demonstrated that water, when it infiltrates nanoporous glass, can switch an insulating oxide to metal. As an example, we have built a FET on an insulating oxide, SrTiO_3 , using water-infiltrated nanoporous glass, amorphous $12\text{CaO}\cdot7\text{Al}_2\text{O}_5$ with nanoporous structure 'CAN' as the gate insulator. First, the insulating SrTiO_3 surface became slightly conductive with gate voltage because of electrostatic charge accumulation. Then, H^+/OH^- ions were generated due to water electrolysis occurring between the gate and the SrTiO_3 surface. Subsequently, a redox reaction took place between H^+/OH^- ions and the SrTiO_3 surface. As a result, a thin metal (~ 3 nm) layer with extremely high electron concentration of $10^{15}\text{--}10^{16} \text{ cm}^{-2}$ was formed on the insulating SrTiO_3 . The electron activity of water, as it infiltrates nanoporous glass 'CAN', may find many useful applications in electronics or energy storage.

Methods

Fabrication of the CAN-gated SrTiO_3 FET. The FET structures (Fig. 2a) were fabricated on the (001)-face of SrTiO_3 single crystal plate ($10 \times 10 \times 0.5$ mm, SHINKOSHA), treated in NH_4F -buffered HF (BHF) solution³². First, 20-nm-thick metallic Ti films, used as the source and drain electrodes, were deposited through a stencil mask by electron beam evaporation (base pressure $\sim 10^4 \text{ Pa}$, no substrate heating/cooling) onto the SrTiO_3 plate. Ohmic contact between the Ti and SrTiO_3 surface was confirmed by conventional I - V characteristics (output characteristics), as shown in Supplementary Figure S3b. Then, a 200-nm-thick CAN film was deposited through a stencil mask by pulsed laser deposition (KrF excimer laser, fluence $\sim 3 \text{ J cm}^{-2}$ per pulse) at RT using dense polycrystalline C12A7 ceramic as target. During the CAN deposition, the oxygen pressure in the deposition chamber was kept at 5 Pa. Finally, a 20-nm-thick metallic Ti film, used as the gate electrode, was deposited through a stencil mask by electron beam evaporation.

Analysis of the CAN films. The bulk density and thickness of the CAN films were evaluated by grazing incidence X-ray reflectivity (ATX-G, Rigaku). Microstructures of the CAN films were observed by using TEM (JEOL JEM-2010, acceleration voltage = 200 kV) and aberration-corrected STEM (JEOL JEM-2100F, acceleration voltage = 200 kV). Water concentration in the CAN films was analysed by TDS measurements (TDS1200, ESCO). The TDS measurements were carried out in a vacuum chamber with the background pressure of $\sim 10^{-7} \text{ Pa}$ at varied temperatures from 60 to 700 °C at a heating rate of 60 °C per min.

Electron transport properties. Electrical properties of the FETs were measured by using a semiconductor device analyser (B1500A, Agilent). The capacitance of the CAN layer on the FETs was measured using an LCR meter (4284A, Agilent). The thermopower (S) values were measured using two Peltier devices under the FET to give a temperature difference between the source and drain electrodes (Supplementary Fig. S7). Two thermocouples (K-type) located at both ends of the channel were used for monitoring the temperature difference (ΔT , 0–5 K). S values were measured after each V_g sweep (for example: V_g application $0 \text{ V} \rightarrow +16 \text{ V} \rightarrow 0 \text{ V} \rightarrow S$ measurements).

References

1. Trasatti, S. 1799–1999: Alessandro Volta's 'Electric pile' two hundred years, but it doesn't seem like it. *J. Electroanal. Chem.* **460**, 1–4 (1999).
2. Light, T. S., Licht, S., Bevilacqua, A. C. & Morash, K. R. The fundamental conductivity and resistivity of water. *Electrochem. Solid-State Lett.* **8**, E16–E19 (2005).
3. Zunger, A. *n*-type doping of oxides by hydrogen. *Appl. Phys. Lett.* **81**, 73–75 (2002).
4. Van de Walle, C. G. Hydrogen as a cause of doping in zinc oxide. *Phys. Rev. Lett.* **85**, 1012–1015 (2000).
5. Frederikse, H. P. R., Thurber, W. R. & Hosler, W. R. Electronic transport in strontium titanate. *Phys. Rev.* **134**, A442–A445 (1964).
6. Breckenridge, R. G. & Hosler, W. R. Electrical properties of titanium dioxide semiconductors. *Phys. Rev.* **91**, 793–801 (1953).
7. Hosono, H., Kikuchi, N., Ueda, N., Kawazoe, H. & Shimidzu, K. Amorphous transparent electroconductor $2\text{CdO}\cdot\text{GeO}_2$: conversion of amorphous insulating cadmium germanate by ion implantation. *Appl. Phys. Lett.* **67**, 2663–2665 (1995).
8. Miyakawa, M., Hayashi, K., Hirano, M., Toda, Y., Kamiya, T. & Hosono, H. Fabrication of highly conductive $12\text{CaO}\cdot7\text{Al}_2\text{O}_5$ thin films encaging hydride ions by proton implantation. *Adv. Mater.* **15**, 1100–1103 (2003).
9. Hayashi, K., Matsuishi, S., Kamiya, T., Hirano, M. & Hosono, H. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor. *Nature* **419**, 462–465 (2002).
10. Matsuishi, S. *et al.* High-density electron anions in a nanoporous single crystal: $[\text{Ca}_{24}\text{Al}_{28}\text{O}_{64}]^{4+}(4e^-)$. *Science* **301**, 626–629 (2003).
11. Kim, S.-W. *et al.* Metallic state in a lime-alumina compound with nanoporous structure. *Nano Lett.* **7**, 1138–1143 (2007).
12. Hayashi, K., Hirano, M. & Hosono, H. Thermodynamics and kinetics of hydroxide ion formation in $12\text{CaO}\cdot7\text{Al}_2\text{O}_5$. *J. Phys. Chem.* **B109**, 11900–11906 (2005).
13. Hosono, H. & Abe, Y. An oxygen-effervescent aluminate glass. *J. Am. Ceram. Soc.* **70**, C38–C39 (1987).
14. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the $\text{LaAlO}_3/\text{SrTiO}_3$ heterointerface. *Nature* **427**, 423–426 (2004).
15. Kozuka, Y., Kim, M., Bell, C., Kim, B. G., Hikita, Y. & Hwang, H. Y. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. *Nature* **462**, 487–490 (2009).
16. Mannhart, J. & Schlom, D. G. Oxide interfaces—an opportunity for electronics. *Science* **327**, 1607–1611 (2010).
17. Reagor, D. W. & Butko, V. Y. Highly conductive nanolayers on strontium titanate produced by preferential ion-beam etching. *Nat. Mater.* **4**, 593–596 (2005).
18. Brinkman, A. *et al.* Magnetic effects at the interface between non-magnetic oxides. *Nat. Mater.* **6**, 493–495 (2007).
19. Ohta, H. *et al.* Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO_3 . *Nat. Mater.* **6**, 129–134 (2007).
20. Kim, S.-W., Toda, Y., Hayashi, K., Hirano, M. & Hosono, H. Synthesis of a room temperature stable $12\text{CaO}\cdot7\text{Al}_2\text{O}_5$ electrode from the melt and its application as an electron field emitter. *Chem. Mater.* **18**, 1938–1944 (2006).
21. Ohta, H. *et al.* Field-modulated thermopower in SrTiO_3 -based field-effect transistors with amorphous $12\text{CaO}\cdot7\text{Al}_2\text{O}_5$ glass gate insulator. *Appl. Phys. Lett.* **95**, 113505 (2009).
22. Sze, S. M. *Semiconductor Devices: Physics and Technology* 2nd edn. (John Wiley & Sons, 2002).
23. Buchner, R., Barthel, J. & Staub, J. Dielectric relaxation of water between 0 °C and 35 °C. *Chem. Phys. Lett.* **306**, 57–63 (1999).
24. Hicks, L. D. & Dresselhaus, M. S. The effect of quantum well structures on the thermoelectric figure of merit. *Phys. Rev. B* **47**, 12727–12731 (1993).
25. Mune, Y., Ohta, H., Koumoto, K., Mizoguchi, T. & Ikuhara, Y. Enhanced Seebeck coefficient of quantum-confined electrons in $\text{SrTiO}_3/\text{SrTi}_{0.8}\text{Nb}_{0.2}\text{O}_3$ superlattices. *Appl. Phys. Lett.* **91**, 192105 (2007).

26. Vining, C. B. A model for the high-temperature transport properties of heavily doped n-type silicon-germanium alloys. *J. Appl. Phys.* **69**, 331–341 (1991).
27. Kan, D. *et al.* Blue-light emission at room temperature from Ar⁺ irradiated SrTiO₃. *Nat. Mater.* **4**, 816–819 (2005).
28. Ueno, K. *et al.* Electric-field-induced superconductivity in an insulator. *Nat. Mater.* **7**, 855–858 (2008).
29. Yuan, H., Shimotani, H., Tsukazaki, A., Ohtomo, A., Kawasaki, M. & Iwasa, Y. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. *Adv. Funct. Mater.* **19**, 1046–1053 (2009).
30. Kergoat, L. *et al.* A water-gate organic field-effect transistor. *Adv. Mater.* **22**, 2565–2569 (2010).
31. Heller, I. *et al.* Charge noise in grapheme transistors. *Nano Lett.* **10**, 1563–1567 (2010).
32. Kawasaki, M. *et al.* Atomic control of the SrTiO₃ crystal surface. *Science* **266**, 1540–1542 (1994).

Acknowledgments

We thank D. Kurita, A. Yoshikawa, T. Mizuno for technical assistance and R. Asahi for discussions. H.O. is supported by MEXT (22360271, 22015009), Y.S. by Research Fellowships of JSPS for young scientists. The Research at Tokyo Tech. is supported by JSPS-FIRST Program.

Author contributions

H.O. performed the sample fabrication, measurements and data analysis. Y.S., T.K., and Y.I. performed TEM/STEM analyses. S.W.K. supplied dense C12A7 ceramics. S.W.K., K.N. and H.H. contributed to water analyses. All authors discussed the results and commented on the manuscript. H.O. planned and supervised the project.

Additional information

Supplementary Information accompanies this paper on <http://www.nature.com/naturecommunications>

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at <http://npg.nature.com/reprintsandpermissions/>

How to cite this article: Ohta, H. *et al.* Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal. *Nat. Commun.* 1:118 doi: 10.1038/ncomms1112 (2010).

License: This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit <http://creativecommons.org/licenses/by-nc-sa/3.0/>