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Environmental change makes robust ecological
networks fragile

Giovanni Strona' & Kevin D. Lafferty?

Complex ecological networks appear robust to primary extinctions, possibly due to
consumers’ tendency to specialize on dependable (available and persistent) resources.
However, modifications to the conditions under which the network has evolved might alter
resource dependability. Here, we ask whether adaptation to historical conditions can increase
community robustness, and whether such robustness can protect communities from collapse
when conditions change. Using artificial life simulations, we first evolved digital consumer-
resource networks that we subsequently subjected to rapid environmental change. We then
investigated how empirical host-parasite networks would respond to historical, random and
expected extinction sequences. In both the cases, networks were far more robust to historical
conditions than new ones, suggesting that new environmental challenges, as expected under
global change, might collapse otherwise robust natural ecosystems.
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cosystems, whether coral reefs, rain forests or a microbiome,

are complex. How complexity evolves and its robustness to

change is both a mystery to ecologists and a challenge for
conservation biologists. To assess the current biodiversity crisis
during global change requires looking beyond endangered species
lists to extinction cascades!. Secondary extinction risk should be
highest for specialists, an example being the loss of the condor
louse after the condor became extinct in the wild’. In some
circumstances, secondary extinctions could trigger even more
extinctions up a food chain, unravelling entire ecosystems>. For
this reason, the already appreciable endangered species list might
be just the beginning®.

Although evolution should lead to both specialization
and robustness to species loss, global change and human
activity might change species vulnerabilities>®, which could
then decrease resource-consumer network stability. We
investigated this hypothesis by contrasting how historical and
novel conditions affected parasite assemblage robustness using
computer simulations and information from global host-parasite
databases. Ecological networks were fragile under environmental
change due to the tradeoff between adapting to a stable past or an
uncertain future.

Parasite assemblages are a convenient model for studying
network robustness because they provide a straightforward,
unidirectional response to host species loss (that is, host
extinction, in general, affects parasite persistence but not the
other way around). To estimate parasite assemblage robustness,
one can apply analytical models, but it is more accurate to take a
food web or a bipartite host-parasite network and then remove
hosts in sequence (called host d1sassembly) recording the rate at
which parasite richness declines’. Parasite robustness declines
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Figure 1| Robustness evolves rapidly in Avida even while specialization
increases. Robustness (a) was measured as the area under the curve of
parasite diversity versus host diversity when a network was disassembled

according to host historical vulnerability (see the ‘Methods’ section).
Specialization (b) was computed as 1 minus the average fraction of hosts
used by parasites in a given experiment. Solid lines and dots indicate
average values. The Spearman-rank correlation coefficient was computed
on all raw data (that is, not on the averaged values shown in the plots).
Boxes indicate first and third quartiles, whiskers indicate range values and
horizontal lines indicate median values.

faster with increasing life-cycle complexity and parasite
specificity’. However, parasite specificity is not independent
from host extinction order. For instance, fish parasites tend to be
either generalists or they specialize on ‘dependable’ hosts that
are less vulnerable to extinction®. A similar pattern occurs
within local food webs, with host/parasite networks being more
robust to rare host removal than to random host removal’.
However, current host vulnerability to extinction, measured by
modern threats (for example, habitat destruction), can differ
from historical vulnerability to extinction’, suggesting that
dependable hosts in the past might not be dependable in the
future>610,

Here, we use artificial life simulations and empirical data to
investigate how stable ecosystems would respond to extinctions
under different scenarios of species loss. We show that
ecosystems evolve complexity that is robust to historical
conditions. However, under changing conditions, including
current anthropogenic threats to biodiversity, robustness to
change decreases, suggesting that future species losses should
trigger secondary extinctions and eventual ecosystem collapse.

Results

Evolving digital host-parasite networks. We ran robustness
experiments with digital hosts and parasites that self- re}lahcate
mutate and compete on the artificial life platform Avida

chose different random settings covering various environmental
scenarios (see the ‘Methods’ section and Supplementary Table 1)
for each of the 100 evolution simulations. Each simulation started
from a single host ancestor that ‘speciated’ with time. After a
random number of host generations, we injected a random
number of identical parasite individuals. As hosts and parasites
diversified, host species varied in their vulnerability to extinction,
and parasite species varied in their virulence, that is, in the
percentage of central processing unit (CPU) cycles subtracted
from a host. Because carrying capacity (that is, number of
available hosts) remained constant throughout the simulation, the
increased host and parasite diversity resulted in an average
increment in specialization of interactions (Fig. 1a). Although
specialization is expected to increase co-extinction risk, parasite
assemblages gained robustness over time, reaching a maximum
within about 5 x 10* generauons (Fig. 1b). We continued the
simulations until 1-5 x 10> generations, obtaining robust digital
host-parasite interaction networks at different stages of maturity.

After each co-evolution simulation, we assessed host
vulnerability (measured as the fraction of simulation steps
survived by a host) by halting mutation and then letting
organisms reproduce and interact with the other hosts and
parasites they had evolved with. Competitive interactions, along
with stochastic processes, extirpated host species in sequence
(like in an ‘arena’ experiment) until the least vulnerable host
remained!?

Host population size at the end of the co-evolutionary phase
was a good predictor of a host’s vulnerability to extinction (with
average Spearman rank correlation coefficient between number of
starting individuals and survived steps in the no-mutation phase,
r,=0.81, P<0.01 in 96% of cases). Vulnerable hosts had parasites
with broader host ranges in most co-evolved networks (average
Spearman rank correlation coefficient, ry=0.54 £ 0.21, P<0.05 in
78% of cases), which shows that, over time, parasites only
specialized on dependable hosts. Furthermore, in most networks,
we also found a negative relationship between the number of
parasite species able to infect a host species and host vulnerability
to extinction (with average ry= —0.68 £0.15, P<0.05 in 91%
of cases). Thus, the most dependable hosts had the highest
parasite diversity and allowed for host specialization, whereas
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Figure 2 | Vulnerable hosts in Avida have fewer and more generalist parasites. Host extinction risk was measured as h/H, with h being the ordinal
position in the extinction sequence of the target host as assessed after the coevolution phase, and H being host richness. Parasite richness (a) and host
range (b) were measured, respectively, as the average fraction of parasites infecting a host, and of hosts used by a parasite. Solid lines and dots indicate
average values. The Spearman-rank correlation coefficient was computed on all raw data (that is, not on the averaged values shown in the plots). Boxes
indicate first and third quartiles, whiskers indicate range values and horizontal lines indicate median values.

only generalists could afford to parasitize undependable hosts
(Fig. 2). This helps explain how assemblage robustness and
specialization can increase together over time.

Disassembling ecological networks. To measure parasite
assemblage robustness to secondary extinction, we disassembled
the 100 host—parasite networks by removing hosts in sequence
until all hosts were removed and all parasites suffered secondary
extinction. We did this under four sequence treatments: best case,
worst case, historical and random (Supplementary Movie 1). The
‘best case’ scenario removed hosts in the reverse order of parasite
richness, thereby maximizing robustness. In other words, because
hosts harbouring many parasites stayed in the assemblage longer
than hosts having lower parasite richness, parasite richness
declined slowly with host removal. Similarly, we found the lowest
robustness (the ‘worst-case’ scenario) by removing hosts in the
order of parasite richness, causing parasite richness to decline
rapidly with host removal. With the robustness limits established,
we removed hosts from most to least vulnerable (according to
the extinction sequence observed in our assessment phase)
to investigate robustness to historical conditions. Then, we
simulated novel changes to the system by randomizing host
removal order. By using randomization to mimic environmental
change in Avida, we do not mean to imply that climate change
or human activity randomly affects species vulnerability, just
that relative species vulnerabilities might differ from historical
conditions in unpredictable ways, as seen for fishes’.

To compare parasite assemblage robustness among disassem-
bly treatments, we plotted the points representing the fraction of
extant parasites after each host removal versus the corresponding
fraction of extant hosts, and we quantified robustness as the area
under the curve connecting these points. The results were not
affected by genotypes, network structure, initial conditions or
whether we removed hosts on the basis of their functional
complexity (see the ‘Methods’ section). Parasite assemblage
robustness under historical vulnerability was close to the best-
case scenario, showing that parasites had evolved to maximize
robustness by not specializing on vulnerable hosts (Fig. 3,
Supplementary Movie 1). Conversely, parasite assemblage
robustness under random host vulnerability (that is, our proxy
for environmental change), was intermediate between the best-
and worst-case scenarios (Fig. 3, Supplementary Movie 1),
showing that changing conditions reduced robustness (an effect
that strengthened with time spent in the historical condition,

Fig. 4). The more historically stable the host assemblage, the less
robust the parasite assemblage was to random host removal.

Experiments on empirical networks. To test our hypothesis
with actual hosts and parasites, we compiled networks including
all known helminth parasites from vertebrate hosts. The global
host-parasite databases have different properties from Avida.
Most notably, the global networks are incomplete, they include
species that, due to different geographical distributions, do not
co-occur and interact, and many parasites have complex life
cycles (in the ‘Methods’ section, we discuss why these limitations
do not alter the main findings). Regardless, as in Avida, the
host-parasite associations in global databases should, in principle,
reflect the relationships between resource dependability, and
parasite richness and specificity. Fish parasite data were from
FishPest!?, whereas data on amphibians, birds, mammals and
reptiles and their acanthocephalans, cestodes, nematodes and
trematodes were from the Natural History Museum of London
host-parasite database (www.nhm.ac.uk), aggregated as in Strona
and Fattorini'4,

One advantage to empirical data over artificial life simulations
is that we could infer novel host vulnerability to extinction from
International Union for Conservation of Nature (IUCN) risk
categories (www.iucnredlist.org) in addition to removing hosts at
random. From these data, we simulated novel, best-case and
worst-case host-removal scenarios. Although we did not know
historical vulnerability for the terrestrial vertebrates, we used fish
intrinsic vulnerability®!> to represent historical vulnerability in
fishes®.

Although removing fish according to their intrinsic vulner-
ability to extinction (corresponding to the historical conditions in
our digital experiments) resulted in significantly lower than best-
case parasite assemblage robustness, robustness was still higher
than when removing fish under novel conditions, whether these
novel conditions were based on IUCN risk categories (that is,
future vulnerability) or random removal (Fig. 5). For both fish
and the other host groups where historical vulnerability was not
available, robustness under novel vulnerability to extinction
measured by IUCN risk categories was no different from random
host removal (paired t-test on the respective areas under the
curve = 0.48; Fig. 6). Furthermore, the robustness to novel change
was indistinguishable among different host and parasite taxa
(analysis of variance P=0.53 for host taxa and P=0.6 for
parasite taxa), suggesting these results are general.
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Figure 3 | Robustness in Avida is close to the best-case scenario under historical conditions but declines under novel conditions. (a) Average fraction
of parasite species remaining in the host-parasite network after the subsequent removal of all host species according to historical conditions (from right to
left) in all the experiments, contrasted with a best and a worst case scenario, and a novel (random) scenario. Ribbons along solid lines indicate 95%
bootstrapped confidence intervals. (b) Robustness (the areas under curves in the four host removal scenarios). Boxes indicate first and third quartiles,

whiskers indicate range values and horizontal lines indicate median values.
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Figure 4 | Robustness to novel conditions in Avida declines over time
due to a tradeoff with the adaptation to stable conditions. Solid lines and
dots indicate average values. The Spearman-rank correlation coefficient was
computed on all raw data (that is, not on the averaged values shown in the
plots). Boxes indicate first and third quartiles, whiskers indicate range
values and horizontal lines indicate median values.

Discussion
Past studies found that historical and novel conditions affect
network robustness. For instance, empirical networks evolve
non-random structure that improves robustness to current
conditions'®. As in our historical disassembly experiments, lake
food webs are more robust to removing the most vulnerable
species than the least vulnerable species, a result attributed to
specialists being more likely to feed on invulnerable prey'’.
Likewise, in a salt marsh food web, the parasite assemblage is more
robust to rare host removal than to random host removal’. In
contrast, the low parasite assemblage robustness to removal based
on host vulnerability in the Upper Parana River floodplain is likely
due to several fish species introductions'®, which exemplifies how
global change might reduce network robustness by altering
historically assembled networks. In such cases, robustness to
change might further decrease with specialization, as observed in
digital networks (Supplementary Figure 1).

These model systems have their limits. In natural systems,
network robustness varies with spatial and temporal scales.
At small spatial scales, robustness depends on patch dynamics,
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Figure 5 | Fish parasites are more robust to historical conditions than to
novel ones. Extinction trajectories in a network based on the entire
FishPEST database'® disassembled, according to a best-case and a worst-
case scenario, historical conditions based on intrinsic vulnerability values'®,
and two novel scenarios (IUCN extinction risk categories and random
removal).

and colonization might ameliorate extirpations, whereas at the
global scale, robustness depends on extinction, and effects
are more long-lasting, at least until evolution can replace lost
species. Because the Avida experiments stop mutation after the
assessment phase, the results do not apply to evolutionary time
scales, and, because they do not allow colonization from outside,
they do not apply to patch dynamics. Furthermore, because the
global empirical host—parasite disassembly experiment includes
hosts and parasites that do not overlap in habitat or space,
it does not mimic assemblage dynamics. Despite these different
assumptions, the results were similar. In the future, we hope to
test our hypotheses in empirical host-parasite networks measured
within a particular ecosystem.

Parasites can indicate rich, complex, healthy ecosystems
because more host species create opportunities for more parasite
species to establish!”2!1. We see this in our 100 Avidian host-
parasite assemblages, where high parasite diversity reflects high
host diversity (r;=0.62, P<0.005). In addition to confirming
how parasite richness indicates host richness, we can now suggest
a new use for parasites as indicators. Because assemblage
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Figure 6 | The similar low robustness of global host-parasite networks to
current conditions and random ones suggests they are not adapted to
global change. Robustness represents the average parasite assemblage
robustness for the global fish parasite network and 16 large host-parasite
networks for terrestrial vertebrates (amphibians, birds, mammals and
reptiles versus acanthocephalans, cestodes, nematodes and trematodes)
according to a best-case and a worst-case scenario, and two novel
scenarios (IUCN extinction risk categories and random removal). The blue
dot indicates the robustness of the global fish network when disassembled
according to FishBase vulnerability values (area under the blue solid line in
Fig. 5). The dotted lines indicate upper and lower 95% confidence intervals
for the robustness values in the random novel scenario. Boxes indicate first
and third quartiles, whiskers indicate range values and horizontal lines
indicate median values.

robustness to novel change declines with time spent in stable
environmental conditions (Fig. 4), parasite assemblage robustness
to random host removal could be used to assess past host
assemblage instability, a community property that is difficult to
measure directly. Furthermore, because parasites tend to
specialize under stable conditions (Fig. 1la, Supplementary
Fig. 1), a simple inverse measure of historical environmental
stability is the average number of hosts per parasite. By
combining average number of hosts per parasite and parasite
richness, one could estimate whether host communities are
relatively rich and stable, rich and unstable, poor and stable, or
poor and unstable. Then, if conditions change, we predict most
secondary extinctions should occur in rich and stable systems,
such as rainforests and coral reefs

Whether in silico, or in nature, ecological networks should
assemble over time so that consumers avoid specializing on
vulnerable resources. Ironically, this stabilizing mechanism
promotes specialization, which then decreases network robust-
ness to novel conditions as expected under climate change,
species invasions and habitat alteration (Supplementary Fig. 1).
Although there will be winners and losers with global change??,
our findings suggest that winners cannot balance losers when it
comes to network robustness.

Methods

In silico experiments. We ran digital experiments on the artificial life platform
Avida version 2.14.0 (http://avida.devosoft.org/)!!. The Avida platform is a model
system for investigating how co-evolution (and co-extinction) works within simple,
transparent, stochastic rules' >3, The most important difference between empirical
food-web assembly?42> and artificial life simulations is that food-web biologists
model natural-looking systems to explain patterns in nature, whereas artificial-life
simulations are alternative ‘natural’ systems that evolve in silico®®?’. Artificial life
simulations generate and maintain complexity starting from a few rules (just as in
natural evolution). This, in turn, generates the patterns expected in ecological and
evolutionary systems.

We studied host—parasite networks for several reasons. First, although Avida
can model predator-prey interactions®®, and can create different trophic levels by
manipulating the resource setting?®, these options are unexplored. Conversely,
host—parasite networks in Avida have ecological and evolutionary behaviors close
to those observed in nature?®, and have been already used to explain how complex
features evolve®? and how parasites maintain host diversity!2. Furthermore,
empirical food webs have limitations, such as unequal resolution among the
trophic levels due to lumping some species in broad taxonomic categories>!. For
instance, in aquatic trophic webs, it is common to have fish identified at the species
level, and all the phytoplankton aggregated into a single category>2. This creates
obvious problems for interpreting robustness, especially when lower trophic levels
are aggregated, leading to unrealistic assumptions such as all phytoplankton go
extinct at once as if they were a single species. Additionally, there is little
information from IUCN on extinction risk for non-vertebrate species. Thus, even if
we obtained resolved food webs, we would have not been able to investigate their
robustness to future extinction scenarios. More importantly, host-parasite
networks are bipartite, which makes it easy to isolate how secondary extinctions
affect system robustness, whereas in food webs, hosts can suffer secondary
extinctions if their resources vanish’.

We used the Python programming language®> and R3 to process Avida output,
simulate disassembly, and analyse data. Supplementary Data 1 details the co-
evolved host-parasite networks and the host extinction sequences in the historical
scenario.

The Avida study had three distinct phases: coevolution, assessment and
disassembly. In the co-evolution phase, we ran simulations to evolve 100 complex
host-parasite networks (100 being enough for hypothesis testing in past
studies?®3%). To make our results as general as possible, we randomized several
parameters (carrying capacity, parasite virulence, resource availability, injection
timing and amount of ancestral parasites) of a setting already explored in
host-parasite co-evolution experiments’. In each simulation, the Avida world was
a bi-dimensional grid with random dimensions between 50 and 120 host units
(thus between 250 and 14,400 host habitations). Mutation rates were the same as in
Zaman et al.%, but we also allowed parasite virulence to mutate throughout the
experiment (starting from 1, that is, a situation in which the parasites steal all the
CPU to its host). To create environmental variation, we randomly selected between
one and nine resources associated with the canonical nine Avida logical operations
(not, nand, and, orn, or, andn, nor, xor and equ). Similarly, we randomly associated
the available resources as products of the nine tasks, with an input-output ratio
randomly selected between 0 and 0.5. We set a random seed for each replicate,
inserted a single host ancestor and allowed for host diversification for a random
period lasting between 1,000 and 5,000 steps, at which point we injected 500-1,000
individuals belonging to a single ancestral parasite species. Both the host and the
parasite ancestors could only do one of the two least complex tasks in Avida (that
is, the ‘NOT’ function, where 0 is returned if 1 is consumed, and vice versa)>C.
Parasites in Avida are similar to free-living species in terms of structure and
evolutionary processes (that is, mutation type and rate). However, parasites could
not survive outside a host. Thus, when a parasite reproduces, its offspring try to
infect a nearby host (like a directly transmitted, single-host microparasite). The
host is susceptible only if it is uninfected, and the parasite can do at least one of its
tasks. Depending on their virulence, parasites can take up to all the host’s CPU
cycles. During the co-evolution phase, hosts and parasites competed, interacted and
co-evolved, generating complex host-parasite networks with different structural
properties. We retained the first 100 simulations where at least one host and
parasite species persisted to a random end point between 10° and 5 x 10° steps
(resulting in assemblages with different ages).

After stopping the co-evolution phase, we assessed host vulnerability to
extinction by letting host species interact but not mutate!2. In this context, host
species compete, going extinct one after another, depending on their relative
fitness, providing an objective way to measure host vulnerability to extinction
under the conditions in which they evolved in the coevolution phase (that is,
historical conditions).

In both the co-evolution and assessment phases, we monitored the species every
100 steps by recording genome, spatial position, host or parasite, genetic code and
closest ancestor. The Avida documentation at https://github.com/devosoft/avida/
wiki gives additional details about how to setup/run Avida simulations, and
processing/interpreting Avida output.

In the assessment phase (that is, after we stopped mutations), we also recorded,
for each host: (i) vulnerability to extinction, measured as h/H, with h being the
order a species went extinct and H being the starting host abundance; (i) parasite
richness; and (iii) average parasite host range; that is, the average number of hosts
(including the target one) used by its parasites. Then, we assessed the relationships
between parasite richness and average host range (standardized by, respectively, the
total number of parasite species and the total number of host species per
simulation), and host vulnerability to extinction (using Spearman’s rank
correlation coefficient) on each individual run, and on all the runs aggregated.

In the disassembly phase, we removed hosts one by one until no hosts
remained, counting parasite species richness at each step. We determined the
best-case scenario for parasites by removing, in sequence, the host with the least
parasites, so that hosts with many parasites went extinct late and parasite diversity
declined slowly. We determined the worst-case scenario for parasites by removing,
in sequence, the host with the most parasites, so that hosts with many parasites
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went extinct early, and parasite diversity declined rapidly. Then, to identify the
parasite assemblage robustness to historical conditions, we removed, in sequence,
the most vulnerable host to extinction as quantified in the assessment phase.
Finally, to identify parasite assemblage robustness to a hypothetical environmental
change, we randomized the host-removal sequence.

For each removal treatment, we averaged 100 replicates where we randomized
ties (for example, the host extinction order associated with the same number of
parasites in the best- and worst-case scenario, or having the same historical
vulnerability or the same maximum complexity). In the random scenario, we
simply averaged 100 random sequences. We quantified parasite assemblage
robustness as the area under the host diversity versus parasite diversity curve
(rescaled as proportions)’.

We considered the extent that various assumptions might affect our results.
Specifically, we asked how network structure, task complexity, genotype, incomplete
information and time in the co-evolutionary phase affected robustness. As detailed in
the following paragraphs, these factors did not alter the qualitative findings.

Because robustness can be sensitive to network structure®, we controlled for
network structure by applying each treatment to the same network. Nonetheless,
our replicate networks differed in structure and that could lead to differences in
robustness among them, adding to the variation we see in robustness within a
treatment. To investigate whether and how network structure can affect robustness,
we did pairwise comparisons between robustness, and basic network properties
such as the number of nodes and edges, the connectance, nestedness/overlap and
modularity®. Most networks tended toward either a nested or a modular structure
or both (Supplementary Fig. 2), whereas segregation (that is, the tendency of
species to minimize overlap in partners) never emerged, which might support the
idea that sharing interacting partners could promote network persistence. Usually,
network structure (Supplementary Table 1) did not affect robustness, explaining, at
most, 10% of the variation (Supplementary Table 2).

We investigated whether task complexity (see Table 1 in Lenski et al.?3) affected
parasite assemblage robustness by replicating the disassembly experiments on the 100
networks and removing hosts in decreasing or increasing order of complexity. We
measured host complexity as equal to its most complex task. Complexity did not
correlate with robustness (P=0.21). Moreover, the robustness measured using
decreasing complexity was not distinguishable from that obtained from random
removal (P=0.56), whereas robustness measured using increasing complexity was only
slightly different from the random removal (P = 0.047; see also Supplementary Fig. 3).

To identify and disassemble networks, we classified organisms (both host and
parasites) into taxonomic units (hereafter ‘species’) by their phenotype, that is,
their ability to do particular tasks>’. However, to assess whether evolutionary
convergence affected the results, we replicated all the disassembly experiments by
classifying taxonomic units by genotypes. We found consistent patterns suggesting
that evolutionary convergence was not biasing our findings (Supplementary Fig. 4).

Empirical networks suffer from incomplete information that underestimates
generality (for example, the more we study networks, the more complex they
appear, with increasing redundancies). To better compare the simulations with the
analysis on the (undersampled) empirical networks, we asked what simulations
would have looked like if we had incomplete information. We replicated all the
analyses by eliminating 10, 20, 30, 40, 50, 60% of the host-parasite interactions,
finding that data gaps only slightly underestimated parasite assemblage robustness
(Supplementary Figs 5-8).

To investigate how soon parasite assemblage robustness emerges through the
co-evolutionary phase, we measured a random parasite assemblage’s robustness to
historical and novel perturbations every 1,000 steps, from 10,000 to 100,000
generations. Figures 1 and 4 show that robustness to historical conditions evolved
relatively early, but there is a tradeoff with robustness to novel conditions.

Tests on empirical host-parasite networks. As a companion to the Avida
experiments, we evaluated our predictions using all fish-parasite records available
from FishPEST (http://purl.oclc.org/fishpest)!3, and 16 large host-parasite
networks, built by combining all the records available from the host-parasite
database of the Natural History Museum of London (http://www.nhm.ac.uk/) for
different combinations of host and parasite taxa (amphibians, birds, mammals
and reptiles versus acanthocephalans, cestodes, nematodes and trematodes). These
networks have already been used to estimate global parasite richness!?.

Both datasets were filtered by including only hosts present in IUCN redlist.
After this filtering procedure, the FishPEST network included 16,681 associations
between 1,696 fish species and 7,555 parasite species belonging to different taxa
(acanthocephalans, cestodes, monogeneans, nematodes, trematodes), whereas the
Natural History Museum of London data included 29,275 associations between
2,751 host species and 9,638 parasites species.

We disassembled these networks, by taxon, by removing hosts as in our
experiments on digital networks. For all host groups, we could estimate future
vulnerability from IUCN risk categories for some species. Thus, for both the
vertebrate and the fish-parasite networks, we simulated 100 worst-case, best-case
and novel scenarios (randomizing the whole order of extinctions in the random
scenario, and only ties in the others). For the fish-parasite network only, we
simulated 100 disassembles under historical conditions using fish intrinsic
vulnerability to extinction (www.fishbase.org)!® as a proxy for historical
vulnerability. Such measures, which take into account fish life history and
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ecological characteristics, have already been used as a proxy for fish intrinsic
extinction risk in studies dealing with co-extinctions®!$.

Sensitivity analyses. We considered the extent that various assumptions might
affect our empirical results. For instance, we calculated robustness as if all parasite
species had simple life cycles. However, many parasites require two or more host
species in sequence, and this reduces robustness’. Another aspect that reduces
robustness in food webs (absent from our disassembly) is that hosts can suffer
secondary extinctions if their resources vanish’. However, because the
overestimation applies to all the scenarios, we expect no bias in the results. The
following paragraphs describe how we determined that reducing the FishPest data
filtering with IUCN records, ties in the IUCN vulnerability rankings, incomplete
parasite information and sampling-effort bias did not alter the qualitative findings.

Although filtering the FishPEST data set by IUCN records reduced the data set,
our analysis on Avida partial networks suggested that incomplete information does
not introduce biases, instead underestimating parasite assemblage robustness. We
found the same pattern by replicating the fish host removal according to intrinsic
host vulnerability on the complete FishPEST network (including 33,426 unique
interactions between 12,762 parasite species and 4,091 host species).
Supplementary Figure 9 plots parasite diversity versus host diversity for,
respectively, the complete FishPEST network, and that filtered by IUCN data (that
is, the same curve shown in Fig. 5).

A potential problem with comparing the empirical data is that the IUCN
categories lead to more ties in the vulnerability ranking than occurs for the
continuous FishBase vulnerability measure!®. To investigate whether ties affected
the results, we replicated the fish host disassembly by grouping fish into five
intrinsic vulnerability categories (corresponding to the five intervals in the FishBase
vulnerability scale). The resulting historical disassembly curve was almost identical
to the one obtained using continuous vulnerability values (R?= 0.99; regression
line: slope = 1.0; intercept = — 0.000004).

Furthermore, the species that are most under-sampled for parasites are either
rare, or limited in range. According to our main hypotheses and findings, rare
species are likely to be used by few generalist parasites. Thus, their addition to the
data sets would not have a strong effect on parasite persistence. Similarly, missing
some host records for widespread generalist parasites would affect the overall
robustness little, because these species are already likely to persist. Even if the
estimate error was appreciable, we do not expect it to affect the comparison among
treatments. The biggest concern about bias for the empirical data would be if
increasing host sampling effort disproportionately sampled vulnerable hosts and
found more specialist than generalist parasite species. Such a pattern could make it
appear that invulnerable hosts had more specialist parasites when they were simply
sampled more. Fortunately, sampling effort (measured as published parasite studies
per fish species) did not correlate with vulnerability (r,= — 0.015) or specialist to
generalist ratio (r,= — 0.049).

Data availability. The 100 co-evolved host-parasite networks and the host
extinction sequences in the historical scenario are available in Supplementary
Information. Host—parasite records used in the analyses are available from FishPest
(http://purl.oclc.org/fishpest) and from the London Natural History Museum
host-parasite database (http://www.nhm.ac.uk). Fish vulnerability scores can be
obtained from FishBase (http://www.fishbase.org), while conservation status
information for both fish and terrestrial vertebrates can be retrieved from the
TUCN website (http://www.iucnredlist.org).
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