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One million years of glaciation and denudation
history in west Greenland
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The influence of major Quaternary climatic changes on growth and decay of the Greenland

Ice Sheet, and associated erosional impact on the landscapes, is virtually unknown beyond the

last deglaciation. Here we quantify exposure and denudation histories in west Greenland by

applying a novel Markov-Chain Monte Carlo modelling approach to all available paired

cosmogenic 10Be-26Al bedrock data from Greenland. We find that long-term denudation rates

in west Greenland range from 450mMyr� 1 in low-lying areas to B2mMyr� 1 at high

elevations, hereby quantifying systematic variations in denudation rate among different

glacial landforms caused by variations in ice thickness across the landscape. We furthermore

show that the present day ice-free areas only were ice covered ca. 45% of the past 1 million

years, and even less at high-elevation sites, implying that the Greenland Ice Sheet for much of

the time was of similar size or even smaller than today.
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T
he Greenland Ice Sheet (GrIS) has been waxing and waning
through multiple glacial-interglacial cycles over the past
few millions of years, thereby sculpting the landscape we

observe today. Little is known of the temporal and spatial extent
of the GrIS before the last deglaciation, because subsequent
erosion has removed most of the evidence. Indeed, the Greenland
ice-core records span only the last B100 kyr (ref. 1), hence the
glacial history predating the last glacial cycle remains elusive. As
the GrIS advanced onto the continental shelf during the
Last Glacial Maximum (LGM), it efficiently eroded deposits
from earlier interglacial and glacial periods, leaving only scattered
onshore2–4 and offshore5–8 fragments of the longer-term geolo-
gical record. Most Quaternary deposits preserved between the
outer coast and the present ice margin have a Lateglacial or
Holocene origin, pointing to efficient erosion and a rapid ice
retreat across this area during the last deglaciation9,10. Over
previous glacial cycles, the ice sheet presumably expanded to
cover the continental shelf and then retreated inboard of the
present ice margin, but well-dated geological evidence testing this
hypothesis is lacking.

The origin and age of the ice-sculpted landscapes in Greenland
may be studied via quantification of past denudation rates (that is,
the removal of mass via physical and chemical weathering), in
particular spatial variations in denudation rate. Bedrock erosion
rates averaged over the Quaternary in Greenland are relatively
unconstrained, but estimated at B40mMyr� 1 based on
North Atlantic marine sediment volumes11,12. This bulk
estimate combines sediment yield from diverse erosion regimes,
including diffusive areal scouring and incision focused along
valley troughs and fjords. Large parts of the fjord landscapes cut
into the west Greenland coastal margin were shaped by selective
linear glacial erosion, characterized by large spatial differences in
erosion due to variations in the subglacial thermal regime13. Here,
deep troughs and/or fjords dissect low-relief plateaus that
presumably were preserved over multiple glacial cycles under
thin and weakly erosive, cold-based ice. The troughs, in contrast,
were carved by thick ice masses with basal ice at the pressure-
melting point, which facilitates sliding and efficient bedrock
erosion14. Identifying how and when the present topography of
Greenland was established entails quantifying spatial patterns of
past denudation rates, which presents a considerable challenge in
such landscape settings imprinted by differential thermal glacial
regimes15,16.

Cosmogenic nuclides provide a widely used tool for quantify-
ing landscape denudation rates and exposure history17. The
method utilizes the constant bombardment of Earth by cosmic
rays produced in supernova explosions, which gives rise to
secondary cosmic-ray cascades in the atmosphere. When the
secondary neutrons and muons penetrate an exposed rock
surface, nuclear reactions produce in situ terrestrial cosmogenic
nuclides (TCNs), of which common nuclides used for dating
purposes are 10Be and 26Al (ref. 17). Depending on the geological
setting, TCNs are commonly used to date the timing of exposure,
which in glacial landscapes typically means the last deglaciation,
or to constrain the denudation rate of a bedrock surface. Repeated
intervals of burial and exposure during successive glacial and
interglacial periods cause discontinuous TCN production. This
imposes additional difficulties for constraining denudation rates,
because the exposure/burial history at a given site is generally also
unknown.

In order to accommodate complex exposure histories, paired
10Be-26Al measurements can be used to estimate a minimum-
limiting total history and the relative proportion of exposure
versus burial, by utilizing that the two nuclides have different
half-lives. Under constant exposure, the two nuclides will
accumulate following a predictable ratio controlled by the

production rates and half-lives, whereas the ratio during periods
of burial is governed by the half-lives only18,19. This approach,
however, has two major shortcomings: It ignores the ongoing
erosion and resultant loss of nuclides back through time, and
secondly it fails to resolve the alternating nature of exposure and
burial through multiple glacial and interglacial periods.
Paired 10Be-26Al bedrock data from high-elevation sites in west
Greenland and the Baffin Bay area indicate long and complex
exposure histories with significant periods of burial, suggesting
preservation under weakly erosive, cold-based ice over
several glacial cycles18,19. In contrast, recently published results
from high-elevation surfaces elsewhere in west Greenland
(Uummannaq), suggest near-continuous exposure throughout
much of the middle and late Quaternary—possibly as nunataks
during the LGM and prior glacial maxima20.

Recent advances in Monte Carlo modelling techniques make it
possible to constrain the history of long-term erosion and
exposure-burial periods by exploiting more efficiently the
differences in production and radioactive decay rates of paired
TCNs21,22. The Markov-Chain Monte Carlo (MCMC) model
approach developed by Knudsen et al. (ref. 21) is based on the
assumption that the exposure/burial history can be divided into
two distinct regimes: (i) glacial intervals with subglacial erosion
and, due to shielding by the overlying ice sheet, no exposure, and
(ii) interglacial intervals experiencing active subaerial erosion and
full exposure, assuming no significant shielding by for example,
snow, till, or vegetation (see ‘Methods’ section). The rates of
glacial and interglacial erosion may differ and vary spatially, but
for any particular bedrock sample the two erosion rates are
uniform throughout all glacials and interglacials, respectively. The
MCMC model does not include sudden individual erosion events,
such as subglacial plucking, but integrates the effects of plucking
events over time. By integrating the glacial and interglacial
erosion rates, it is possible to compute a robust, long-term
denudation rate for each sample. The exposure/burial history is
determined by applying a threshold value to a stacked benthic
marine d18O record23, which is a proxy for past global land-ice
volume.

In this study, we apply the new MCMC inversion model21 to
all available 10Be-26Al bedrock data from west Greenland,
encompassing 49 samples altogether. The most realistic and
up-to-date landscape information is integrated as boundary
conditions in the model set-up, which enable us to quantify past
denudation rates combined with exposure/burial histories. We
show that the denudation rate decreases with increasing elevation,
from 450mMyr� 1 in low-lying areas to 1–5mMyr� 1 at high-
elevation summit flats (4850m a.s.l.). We also find that the
majority of samples are consistent with presence of an ice cover
ca. 45% of the past 1Myr, whereas the fraction of ice-covered
periods was smaller (10–20%) at many high-elevation sites.

Results
Denudation rates and landscape evolution in west Greenland.
The paired 10Be-26Al bedrock data derive from four study sites in
west Greenland. We apply the MCMC approach to all samples
displaying a simple exposure 10Be age of 20 kyr or more. The
simple exposure ages are calculated based on the assumption of
continuous exposure, no inherited TCNs, and no post-glacial
erosion. The samples with an exposure 10Be age of 20 kyr or more
are believed to violate these preconditions, based on comparisons
with ages from boulders and radiocarbon ages of proglacial lake
sediments. The relevant samples include 11 samples from
Upernavik19, 19 samples from Uummannaq20,24,25, 10 samples
from Itilleq26 and 9 samples from Sukkertoppen20, the two latter
sites both belonging to the Sisimiut area (Fig. 1). The
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Uummannaq and Upernavik areas have high relief with deep
fjords that stretch from the present ice margin to the coast. The
samples located close to Sisimiut are from (i) a low-relief area
between the fjords (Itilleq), and (ii) from summit plateaus around
a local ice cap (Sukkertoppen).

All four sites were sampled across a wide range of elevations
from valleys to summits and show an overall trend of increasing
simple exposure 10Be age with altitude (Fig. 2a). From this we
identify an elevation threshold, above which all samples display
non-negligible inheritance, which must derive from periods of
exposure associated with earlier interglacials or ice-free periods.
Inheritance is defined by a nuclide inventory that exceeds
post-glacial production and implies inefficient bedrock erosion
(o2–3m) over the last glacial period. In reality, however, it is not
possible to define a specific threshold below which there with
certainty is no inheritance. Our results show that high-elevation
summit flats (4850m a.s.l.) yield the slowest long-term
denudation, typically B1–5mMyr� 1, whereas sites at lower
elevations have denudation rates of 15–20mMyr� 1 (Fig. 2b).
There are exceptions to the general trend, as some low-elevation
samples have denudation rates o10mMyr� 1, demonstrating
some spatial variations in the erosion processes shaping the
landforms. The overall pattern of decreasing denudation rates
with increasing elevation is nonetheless consistent with the
distribution of minimum-limiting exposure and burial ages in
such landscapes19,27–29. This trend reflects that glacial erosion is
more efficient in fjords and valleys where the ice is thick enough

to be warm-based and reach the pressure-melting point at the
ice-bedrock interface. The low erosion rates found at inter-fjord
uplands are consistent with the presence of cold-based ice,
which is frozen to the ground and only moves due to internal
deformation, thereby preserving the high-elevation areas30. The
differential erosion has a major influence on the overall evolution
of the landscape and is key to understanding the age of landforms
and their development through the latter half of the Quaternary.
Our analyses further reveal that samples with non-detec-
table TCN inheritance must have total denudation rates
450mMyr� 1 (See Supplementary Data 1). The denudation
rates in the fjord troughs (where TCN inheritance is negligible)
are therefore in excess of 50mMyr� 1 and potentially one or two
orders of magnitude higher, as reported by previous studies based
on sediment yields31 .

Overall, the denudation rates modelled over the past 1Myr
support the notion of selective linear erosion along the GrIS
margins as denudation rates drop more than an order of
magnitude with increasing elevation. We cannot exclude
the possibility that the spatial patterns of differential erosion
are somewhat influenced by bedrock erodibility, caused by
for example, variations in bedrock fracture density or orienta-
tion32,33. The linear appearance and the fairly uniform
orientation of the fjords certainly support the notion of a
structural inheritance within these glacially eroded landscapes15.

The low denudation rates at high elevations imply as little as
3–15 m of summit lowering, if extrapolated over the entire
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Figure 1 | Overview maps of sample sites and simple exposure 10Be ages. (a) South Greenland overview with coloured boxes marking the four TCN

sample sites and black circles marking points of pre-LGM Quaternary data5,7,36. (b) Uummannaq area with sample sites containing 10Be and 26Al bedrock

data19. The point marked with an asterisk represents 3 sample sites, which are shown in the top left box. The scale bar is 50 km wide. (c) Sample sites with
10Be and 26Al bedrock data20,24,25 from the Upernavik area. The scale bar is 25 km wide. (d) Sisimiut area, covering samples from two sites; the inter-fjord

site Itilleq26 (red) and samples from the margins of the local ice cap Sukkertoppen20 (yellow). The scale bar is 50 km wide. The data points shown in

(b–d) meet the criteria of being applicable to the MCMC model approach, by having simple exposure 10Be ages above 20 kyr and a 26Al/10Be ratio below

7.5. (b–d) Simple exposure 10Be ages are calculated using Cronus Version 2.3 (ref. 45) and the Lal (1991)/Stone (2000) scaling scheme40,41. Figure 1 was

created using QGIS software46. All satellite images are from Landsat8, August 2016, courtesy of the U.S. Geological Survey.
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Quaternary period. However, we consider this to be a minimum
estimate, as the patterns and pace of glacial erosion may have
changed systematically over time. Specifically, we envisage that
the erosional contrast between high surfaces and glacial troughs
has grown over time in response to the topographic change, as the
increasing relief around emerging fjords steered more and more
ice into the fjords and away from the inter-fjord uplands, which
furthermore experienced isostatic uplift14. Erosion may therefore
have been more uniformly distributed (that is, faster at high
surfaces and slower in troughs) during the early glaciations and
before the deep fjords were formed. Our MCMC model cannot
capture such transitions, as it assumes that rates of glacial and
interglacial denudation are uniform in time. The MCMC model
does, however, illuminate a robust and systematic elevation-
dependence of denudation rates within the most recent
glaciations.

Glaciation history in West Greenland. The quantification of
denudation rates is tied to an estimate of the most likely exposure
history, defined by the d18O threshold for each sample. The
exposure histories make it possible to calculate the cumulative
sum of exposure time over the alternating ice-free and ice-cov-
ered periods over the past 1Myr. This cumulative, simulated
exposure/burial history is conceptually more advanced than the
minimum-limiting exposure and burial durations defined by the
simplest pathway to explain a point on the two-isotope diagram
(Fig. 3a), because it takes into account the most likely timing of
ice-free and ice-covered periods based on a proxy for past global
ice volume. For all samples, it is possible to define an exposure-
burial history that is consistent with the measured 10Be and 26Al
data. The proportion of cumulative exposure during the last
1Myr, defined by the d18O threshold value, varies from o15% to
490%. There is no obvious relationship between the proportion
of cumulative exposure time and elevation, but samples char-
acterized by a relatively low degree of cumulative exposure
(o25%), or by a high degree of cumulative exposure (475%),

tend to derive from sites at high elevations relative to the
surrounding topography (Fig. 3b). As expected, the cumulative
exposure time is closely linked to the 26Al/10Be ratio, with high
26Al/10Be ratios corresponding to high proportions of cumulative
exposure (Fig. 3c). In general, the uncertainties associated with
estimates of cumulative exposure proportions are relatively high,
but they are considerably smaller for samples with a high degree
and, in particular, low degree of exposure. For samples with a low
degree of cumulative exposure, it is only possible to simulate
26Al/10Be ratios as low as the measured ratios if the exposure is
limited to short intervals during the warmest interglacial periods.
It is possible, however, that the low-ratio samples were exposed
for longer periods of time before the last 3–4 glacial cycles, but
such a scenario is beyond the present modelling capability of the
MCMC approach, as it requires non-uniform erosion rates
and/or a time-dependent d18O-threshold level.

Discussion
The notion of high-elevation surfaces around Uummannaq that
remained free of ice during the LGM and earlier glacial maxima
was born from high 26Al/10Be ratios indistinguishable from the
production ratio of B6.75 (ref. 20). Here, we demonstrate that
the paired nuclide data from Uummannaq and Sukkertoppen
displaying high 26Al/10Be ratios are fully consistent with burial
during glacial maxima, including an LGM ice cover lasting
15–20 kyr (Fig. 3c). Due to the uncertainty on the measured TCN
concentration, it is not possible to firmly establish whether these
high-elevation surfaces were ice covered or ice free during the
LGM and earlier glacial maxima, as ice-free conditions also
remain a possibility for samples with 26Al/10Be ratios indis-
tinguishable from the production ratio. However, the majority
(39 out of 49) of the samples point to all three areas being ice
covered during glacial maxima. On the basis of the cumulative
exposure histories of the samples from Sisimiut, Uummannaq,
and Upernavik, we constrain the most likely exposure-burial
history associated with the waxing-waning GrIS in these three
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Figure 2 | Simple exposure 10Be ages and long-term denudation rates as a function of altitude. (a) Simple exposure 10Be ages tend to increase with

elevation. Above a certain threshold (dashed line), all bedrock samples contain a cosmogenic signal inherited from periods before the most recent

glaciation. The grey zone marks the limit used to constrain the timing of the Holocene deglaciation (10–16 kyr) for all sites (see ‘Methods’ section). 10Be

ages are calculated using Cronus Version 2.3 (ref. 45) and the Lal (1991)/Stone (2000) scaling scheme40,41. (b) Total denudation rates over the last 1Myr

based on application of the MCMC approach to samples with a simple exposure 10Be age above 20 kyr and a 26Al/10Be ratio below 7.5. All three sites in

west Greenland show a clear trend of decreasing denudation rate with increasing elevation. Diamonds represent samples from the same previous studies,

but with information from 10Be only (that is, no 26Al data were available). The rates of denudation associated with these samples have larger uncertainties.

Error bars are defined as the first and third quartiles of the 200,000 iterations per sample.
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areas. We first compute the most likely exposure-burial history
for samples with a simple exposure 10Be age above 20 kyr
and 26Al/10Be ratios lower than the production ratio (See
Supplementary Data 1), and we apply Chauvenet’s criterion34

to exclude outliers (for example, samples GU110 and NAG11).
This provides an estimate of the broad-scale behaviour of the
GrIS at Sisimiut, Uummannaq and Upernavik (Fig. 4),
respectively, which on average suggests ice-free conditions for
B55% of the last 1Myr. On the basis of our analysis of exposure/
burial histories, we propose that the expanding GrIS did not
engulf these areas in west Greenland when Marine Isotope Stage
(MIS) 5e terminated and was succeeded by the subsequent
Weichselian/Wisconsin glacial period. The GrIS appears to have
expanded across these three areas at around the onset of MIS 4
(B72 kyr ago). The average exposure/burial histories, based on
samples with 26Al/10Be ratios indistinguishable from the
production ratio (Fig. 4), suggest that most of the
high-elevation surfaces around Uummannaq were ice free for
almost 90 kyr before the LGM, during which the high surfaces on
average may have been ice covered for B18 kyr. Considerable

spatial variation is indicated by a few sites only experiencing
ice-free conditions during peak interglacial periods (for example,
GU110). However, in light of uncertainties, we advise some care:
the notion of ice advance and retreat occurring everywhere in the
landscape simultaneously is overly simplistic. At some sites, the
exposure-burial histories were possibly further complicated by
partial shielding associated with thin ice covers, meaning that the
TCN production was not completely halted during glacial
periods. The presence of such thin overlying ice covers would
prolong the estimated duration of ice-covered periods, but exert
negligible effect on the estimated erosion rates.

Our results reveal a glaciation history for west Greenland that
is in accordance with the sparse geological evidence available,
which suggests ice-free conditions in the fjord area for the
Holocene, the early Weichselian/Wisconsin, and during MIS 5e
(ref. 2). We find that ice-free periods associated with interglacials
MIS 5e, MIS 11 and MIS 21 stand out in all three areas as longer
than other ice-free intervals. Based on a reconstruction of Arctic
temperatures from a Siberian lake, MIS 11 is considered
significantly warmer than other interglacials35. Therefore, if the
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interior of southern Greenland was completely deglaciated, as
geological findings suggest7,36, it most likely happened during
MIS 11, which appears to have been both warm and relatively
long-lasting. Our results also indicate that the ice-covered periods
with the longest duration coincide with deposits of marine glacial
debris flows in the Davis Strait5,37 (Fig. 4). Four of these five long-
lasting ice-covered periods, where the ice extent reached the
Greenland shelf, most likely experienced 450 kyr of continuous
ice cover, except for most high-elevation plateau locations that
probably were ice-covered only during glacial maxima (Fig. 4c,
red line).

In summary, we illustrate how multiple paired cosmogenic
nuclides can be used to shed light on the response of the GrIS to
climate change during the last 1Myr. We constrain the most
likely glaciation histories and differential denudation rates in the
fjord areas of west Greenland, and hereby quantify rates of
lowering associated with various glacial landforms. Our applica-
tion of the MCMC modelling approach to paired cosmogenic
nuclides opens new avenues for quantifying glacial and

interglacial denudation rates, which are essential to understand
long-term landscape evolution and the origin of the glacial
landscape we observe today.

Methods
Markov-Chain Monte Carlo inversion approach and model set-up. The novel
MCMC inversion model21 used in this study to quantify past denudation rates and
exposure/burial histories includes four model parameters; the interglacial and
glacial erosion rates (in mMyr� 1), as well as the timing of the last deglaciation
(in kyr) and the d18O-threshold level (in %). Application of the d18O-threshold
level to the global benthic marine d18O record23, which is a proxy for changes in
past global ice volume, is used to define the exposure/burial history in the model
simulations, following the idea presented by Stroeven et al.38. The stacked d18O
record is smoothed using a 5-kyr running window so it reflects the major marine
isotope stages (MISs) and sub-stages. The smoothed d18O record thus allows
changes in exposure/burial regimes in the model set-up that are consistent with the
available knowledge of large-scale glacial advances and retreats in Scandinavia30.
The Holocene deglaciation is a free parameter in the model and we apply a set of
wide boundary values, allowing the deglaciation to take place between 10–16 kyr in
all three areas. This is a rather conservative estimate based on bedrock-boulder
pairs from each of the three areas10,19,24–26 and allows considerable variation due
to elevation and distance to present ice margin. The interval of the Holocene
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Figure 4 | Climate and modeled glaciation history in west Greenland throughout the last 1Myr. (a) The stacked benthic marine d18O record23 is a proxy

for global ice volume and is divided into numbered marine isotope stages (MIS). We determine the exposure history by applying a threshold to this global

climate record. (b) The diatom productivity curve from Lake El’gygytgyn35, which is a temperature proxy based on limnic Arctic data, indicating very warm

conditions during MIS 11. (c) Quantification of the most likely periods of exposure (‘Exp’ and green coloration) and burial by ice cover (‘Bur’ and blue

coloration) based on 39 bedrock samples (black lines) from four sites in the Fjord Area of west Greenland19,20,24–26 (the Sisimiut exposure/burial history

covers the sample sites Itilleq and Sukkertoppen). Red lines mark the glaciation history of samples that only have experienced very short durations of burial

and therefore have 26Al/10Be ratios at or above the production ratio of 6.75. The red lines are based on three samples from Sisimiut and seven samples

from Uummannaq. It is likely that the ice sheet extended to the shelf edge and deposited glacial debris flows during the five most prolonged ice-covered

periods5,37.
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deglaciation also frames the possible range of d18O-threshold values, which are
allowed to vary between 3.6% and 4.7%. For samples with 26Al/10Be ratios
indistinguishable from the production ratio of ca. 6.75, we expand the d18O
boundary values to 3.6–5.0%, allowing for the possibility of continuous exposure
throughout the last 1 Myr. The glacial and interglacial erosion rates have broad
boundary values of 0.1–1,000mMyr� 1. We used all available paired 26Al/10Be
data for bedrock samples in Greenland with a simple exposure 10Be age above
20 kyr and a 26Al/10Be ratio below 7.5. Ratios above this level are unlikely to form
in any burial and/or exposure scenario and they cannot be simulated based on the
currently known muonic and spallogenic production rates.

We follow the procedure demonstrated by Knudsen et al.21 and compute the
production and decay/erosion of 10Be and 26Al throughout the Quaternary for
different combinations of the model parameters, and compare the results to the
measured concentrations between each simulation. We use a sea level high-latitude
10Be production rate of 4.01 atoms g� 1 per year and 26Al production rate of 27.07
atoms g� 1 per year, based on the calibration set by Borchers et al.39 for 10Be and
26Al surface production rates and the Lal (1991)/Stone (2000) scaling scheme40,41

for all 49 samples from the three areas in west Greenland (see Supplementary
Data 1).

The Metropolis-Hastings MCMC technique42,43 is used to map the family of
model parameters that provides the best, weighted least-squares fit to the measured
data. For each sample, we use four ‘random walks’, which start at different places in
the model space, to ensure that the result does not depend on the starting position
of the search through the model space. A burn-in phase of 1,000 iterations is used
to make a crude initial search of the model space, whereas 50,000 iterations and an
acceptance ratio of 0.4 are used in the main MCMC phase, when finding the most
probable scenarios amongst the 4� 50,000 iterations. To estimate the model
parameters for each walker, we use the median of the 200,000 simulations, whereas
the associated uncertainties are based on the 25% and 75% quartiles.

Compilation of the model output. As the results obtained with the four different
walkers are very similar, we use the average of all simulations for each sample
(200,000) to estimate the model parameters, which, in turn, makes it possible to
estimate the total denudation rate as well as the exposure/burial history. The
exposure/burial history associated with each sample emerges by applying the
median d18O threshold value (Supplementary Fig. 1) to the global marine benthic
d18O record23, hereby defining periods of exposure and burial as the intervals
below/above this threshold, respectively. Supplementary Fig. 2 shows an example of
the d18O threshold value for one sample. The exhumation history and total
denudation rate over the last 1Myr are estimated for each sample by integrating
the glacial and interglacial erosion rates (Supplementary Fig. 1) with the burial/
exposure history, and subsequently computing the median exhumation history
based on the 200,000 simulations (example of exhumation history is shown in
Supplementary Fig. 3). The minimum denudation rate of 450mMyr� 1

computed for low-lying areas and glacial troughs are based on 25% quartiles from
samples with uncertainties that overlap the timing of the Holocene deglaciation.
We compile the exposure/burial history for each of the three areas (Supplementary
Fig. 4) by taking the average median d18O threshold value of all samples with a
simple exposure 10Be age exceeding 20 kyr. The samples within each area are
additionally grouped into samples with 26Al/10Be ratios below the production ratio
(6.75) and samples with ratios above, or indistinguishable from, 6.75.

Till-cover sensitivity. We test the effect of a till cover during exposure periods,
which would dampen the nuclide production and could cause too-young exposure
ages if not taken into account. To understand how the reduced nuclide production
due to the presence of a till cover with variable thickness affects the estimate of the
denudation rate and d18O-threshold value, we apply the correction factor for till
using equation (1) (ref. 17):

ftill ¼ e� zrL� 1 ð1Þ
to the nuclide production rates, using a till density of 2,200 kgm� 3 (ref. 44).

Supplementary Fig. 5a–f shows how four different samples (GU041, GU113,
14-GROR-40 and 13-GROR-70) respond to till with a thickness varying from 0.1m
to 1.0m covering the bedrock during 25, 50 or 100% of the ice-free periods. The
samples derive from three different sites and represent different elevations and
landscape settings. The lowermost points in each subplot show the modelled
denudation rate (Supplementary Fig. 5a–c) and d18O-threshold value
(Supplementary Fig. 5d–f) without till cover.

In general, the d18O-threshold value is less affected by till cover than the
denudation rate, but the effect is indistinguishable with regard to both denudation
rate and exposure history (determined by d18O-threshold value) for most of the
samples. Except for one sample, it is only in the most extreme cases of 0.5–1.0m of
till cover during 100% of the ice-free periods that the results are significantly
affected by the presence of till. The presence of a till cover would result in
denudation rate estimates that are slightly too high and d18O-threshold value
estimates slightly too low, if the till cover is not accounted for. The magnitude of
these effects depends on the duration and thickness of the till cover. In general, till
covers are rarely observed today in the sampled regions, and we do therefore not
expect till cover to present a significant problem when estimating the landscape
history in west Greenland based on TCNs.

Data availability. The authors declare that the main data supporting the findings
of this study are available within the paper and its Supplementary Information files.
Extra data are available from the corresponding author on request.
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