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From protein sequence to dynamics and disorder
with DynaMine

Elisa Cilia"?, Rita Pancsa>4, Peter Tompa?34, Tom Lenaerts'?> & Wim F. Vranken?34

Protein function and dynamics are closely related; however, accurate dynamics information is
difficult to obtain. Here based on a carefully assembled data set derived from experimental
data for proteins in solution, we quantify backbone dynamics properties on the amino-acid
level and develop DynaMine—a fast, high-quality predictor of protein backbone dynamics.
DynaMine uses only protein sequence information as input and shows great potential in
distinguishing regions of different structural organization, such as folded domains, disordered
linkers, molten globules and pre-structured binding motifs of different sizes. It also identifies
disordered regions within proteins with an accuracy comparable to the most sophisticated
existing predictors, without depending on prior disorder knowledge or three-dimensional
structural information. DynaMine provides molecular biologists with an important new
method that grasps the dynamical characteristics of any protein of interest, as we show here
for human p53 and E1A from human adenovirus 5.
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roteins derive their vast arrays of functions from the

numerous interactions they have with each other and with

other molecules in cells and organisms. These interactions
are understood through knowledge of the three-dimensional (3D)
structure of proteins in complex with their binding partner(s), an
approach that is very successful and has led to many scientific
breakthroughs. The dynamics of proteins, however, is also
essential for their function, as exemplified by intrinsically
disordered proteins (IDPs)>%: they adopt an essential role in
many biological processes and are implicated in pathogenic
processes such as amyloid plaque formation in Alzheimer’s. IDPs
function as an ensemble of conformations and have no consistent
3D structure; their amino-acid residues will sample many
different conformations, although they can still prefer certain
conformations to others as determined by their sequence context>.

Protein disorder is therefore related to dynamics; however, its
identification and interpretation still pose a significant challenge.
The key resource in the field, the DisProt database®, stores
information on disordered regions through binary order/disorder
(O/D) annotations on the amino-acid-residue level, which leads to
the impression that a residue can behave only in two discrete
ways. Such a clear distinction cannot be made; disorder is context-
dependent, and many residues in non-globular proteins display a
‘dual personality’, where they exhibit a range of behaviours
depending on environmental conditions. Within disorder, there
are also distinctions to be made: a disordered residue can occur in
many different conformational states and can occupy these with
varying frequencies®~®. Another limitation is that the disordered
regions in DisProt were often serendipitously observed and may
therefore cover only a small and probably unrepresentative
fraction of all disordered regions present in proteins. The >50
disorder predictors published to date’ were almost all trained or
tuned on DisProt annotations, and despite employing a large
variety of computational principles and different subsets of
carefully selected (structural) data, the resulting algorithms may
not have the capacity to generalize beyond these data.

Nuclear magnetic resonance (NMR) spectroscopy is the key
technique to study dynamics and conformational states of
proteins in solution at atomic resolution!®!!, NMR-based case
studies'>!* have indicated that the level of conformational
exchange of amino-acid residues is directly related to their
dynamics, with fast dynamics indicating fast interchange between
many (different) conformations. Information on fast local
dynamics on the pico- to nano-second timescale can be
obtained from NMR spin relaxation measurements; such fast
motions are required for slower timescale dynamics such as
conformational transitions'>1®, These relaxation measurements
entail, however, a considerable experimental effort, and the data
are not routinely deposited in public archives. Much more
accessible are the atomic-level chemical shifts, which are
exquisitely sensitive to their environment. These chemical shifts
give an averaged picture of local dynamics; however, they are

abundantly available for a very diverse collection of proteins
ranging from fully folded to disordered ones.

To exploit this vast amount of data, we transform a carefully
curated collection of chemical shifts for 2,015 of such proteins
into a data set containing per-residue information on the fast
movements of the protein backbone. This unique resource is
directly rooted in experimental data closely connected to
dynamics, gives a continuous and subtle picture of how amino-
acid residues behave dynamically, and avoids the use of 3D
structures!”18, It provides a statistical and quantitative view of
the backbone dynamics properties for each amino acid that can
be used to differentiate between the amino-acid tendencies to
promote order or disorder. Using a linear regression approach,
we construct DynaMine, an entirely novel method to accurately
predict protein backbone dynamics directly from protein
sequence. DynaMine identifies protein disorder as well as the
most sophisticated existing predictors, but without using prior
disorder information, instead depending on the underlying
physical dynamics data. In doing so, it so firmly establishes the
long anticipated link between dynamics of the polypeptide chain
and structural disorder'®2?, More importantly, it is the first direct
predictor of dynamics from sequence, and we show through a
range of case studies that it has great potential in distinguishing
regions of different structural organization, such as folded
domains, disordered linkers, structurally ambiguous molten
globules and pre-structured binding motifs of different sizes.

Results

Amino-acid backbone dynamics behaviour. The core data set
for the current work consists of backbone N-H $? order para-
meter (SﬁCI) values estimated from chemical shift values with the
Random Coil Index (RCI) software?! (see Methods) for 218,259
residues in 2,015 proteins from the BioMagResBank (BMRB)%2
(DSgrci.s2> Table 1). Only those proteins were included that fulfil
certain criteria regarding available chemical shift data, sample
content and sample conditions (see Methods). S?> order
parameters represent how restricted the movement of an
atomic bond vector is with respect to the molecular reference
frame. A value of 1.0 signifies complete order (stable
conformation), whereas a value of 0.0 means fully random
bond vector movement (highly dynamic). The S values capture
motions from femtosecond up to nanosecond and possibly to
higher timescales?! and correspond with reasonable accuracy to
experimentally determined S> order parameters (S2p)> @ finding
we reconfirmed (see Methods).

In an exploratory analysis, we filtered the DSgcrs, data and
calculated for each amino acid their statistical propensities towards
adopting particular S, values (see Methods); positive values indicate
that an amino acid prefers to adopt that particular Sh value (higher
propensity), negative values that it does not. These propensities are
shown per residue and S3.; value class in Fig. 1, where we divided the

Table 1 | List of data sets and their content (also see Fig. 3).

Data set (DS) Proteins Residues Details

EXP-RCI-S2 16 1,582 Chemical shifts and experimental S? order parameters available

RCI-S2 2,015 218,259 Chemical shifts available

RCI-S2_DP 50 3,263 RCI-S2 set overlapping with 46 DisProt entries

RCI-S2_NO_DP 1,902 207,617 RCI-S2 set without DisProt

RCI-S2_UNION_DP 1,952 210,880 Combination of RCI-S2_DP and NO_DP sets

EXP-S2 21 2,340 Experimental S2 order parameters available

IND_DP 241 17,078 DisProt entries enhanced with PDB information for ‘order’ states not in RCI-S2_DP

RCl, random coil index; EXP, experimental; DP, DisProt.
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Figure 1 | Dynamics propensity per amino acid. Information difference
per Si.,-based order class for amino acids that prefer order (a), are neutral
(b) or prefer disorder (c). The grey zone indicates the intermediate
dynamics zone between 0.70 and 0.85.

amino acids into ordered (Cys, Phe, Ile, Leu, Val, Trp, Tyr) (Fig. la),
neutral (Ala, Glu, Lys, Met, Gln, Arg, Thr) (Fig. 1b) and disordered
(Asp, Gly, His, Asn, Pro, Ser) (Fig. 1c) types.

The ordered residues show very similar propensities (Fig. 1a);
they prefer backbone rigidity (Skq; values >0.85) and have strong
negative propensities for a dynamic backbone (low Sk values).
The one exception to this general trend is Leu, which has neutral
propensity for very high S3; values >0.9 and is less indisposed
towards adopting highly dynamic states; this might indicate it is

typically more involved in dynamic processes. The amino acids in
this group exactlg match prior knowledge about order-promoting
amino acids?>2>, which is related to hydrophob1c1t as was
already established in the context of protein disorder?®*” but are
here quantified according to their backbone dynamics behaviour
in proteins.

The propensities for neutral residues remain close to zero
(Fig. 1b). Some have slight propensities towards backbone
rigidity: Ala, Arg, Gln, Glu and Lys have a preference for Saq
values of 0.85, whereas Thr has a slight tendency to adopt very
high S3.; values. His and Met on the other hand have increased
propensities for very low Sk values, indicating their frequent
occurrence in regions with a highly dynamic backbone.

The residues we classified as disordered have neutral or negative
propensities for a rigid backbone (Fig. 1c) and increased
propensities for a more dynamic backbone (Si; values <0.8);
Gly and Ser (the most disorder-promoting residues®>*?) maintain
this preference for a highly dynamic backbone (very low Si
values), whereas for Pro it drops to neutral. The profiles for Asp and
Asn are interesting, as despite their small and hydrophilic sidechains
they lack a strong propensity for highly dynamic states, possibly
because of their capacity to form order-promoting sidechain to
backbone hydrogen bonds. Asn has mostly neutral propensities,
with a somewhat elevated propensity for S, values around 0.8.
Asp, on the other hand, has a very low propensity for i, values
<0.5, and an increased propensity for the 0.6-0.7 region. The
typically negative charge of the carboxylic acid sidechain group in
Asp could be responsible for this striking difference.

These dynamics profiles show that differences between the
classical order and disorder-promoting behaviour of amino acids
can be quantified and identified based on the Si; order parameters.
Interestingly, the propensities for the ordered and disordered types
switch side in the intermediate dynamics zone (grey zone in Fig. 1);
this indicates the importance of this backbone dynamics region in
determining amino-acid behaviour and hlghhghts that it is not
realistic to classify S? values, or disorder, in a binary sense: their
spread is continuous, and applying a discrete cutoff imposes a naive
meaning to the actual residue behaviour. Further improvements in
the methodology to obtain dynamics information from chemical
shifts, and inclusion of additional NMR data, will help to shed light
on how each individual amino acid behaves with respect to
disorder. It is however clear that the DSycrs, data constitute a
unique statistical resource on backbone dynamics in relation to
individual amino acids.

The linear backbone dynamics predictor DynaMine. The
DSgcr.s, data set enabled us to develop DynaMine, a predictor of
fast backbone dynamics from protein sequence only. We separated
the DSgcrs, data set into two subsets: DSpcrs2 no_pp» With only
sequences that have <90% sequence overlap with DisProt, and
DSgcrsa pp» With sequences that have DisProt annotations
(Table 1). The DSpcrs no_pp data set was then used to train
different linear regression models based on the size of the
sequence window around the target amino acid (where a window
size of, for example, 7 means that three amino acids on each side
of the target amino acid are included). The performance of each
predictor was evaluated by 10-fold cross-validation (see Methods).
The linear correlation and Root Mean Squared Error (RMSE)
(Fig. 2a,b), between the predicted S order parameters (S? red) and
the actual S3., values, improves as more of the amino-acid
sequence context is taken into account. This is also evident from a
parallel evaluation where the whole DSpcrs2 no_pp data set was
used for training, all sequences in the DSgcrsz pp data set pre-
dicted and the resulting S?; compared with the S values
(Fig. 2cd, blue). Although the improvements become less
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Figure 2 | Evaluation of DynaMine performance. Box plots, with bottom and top of the box representing the first (g;) and the third quartile (g3) of
each distribution and the end of the whiskers at q;—1.5(g3.g;) and g3+ 1.5(gs.g;) of Pearson Correlation (a) and RMSE (b) of different 10-fold cross-
validations of the linear regression model learnt from DSrc|-s2 no_pp bY varying the window size w. Comparison of the Pearson Correlation (¢) and RMSE
(d) of different 10-fold cross-validations (mean values over the 10-folds) performed on DSgci-s2 no_pp (in red), with those of the predictions on the
independent test set DSgc| s> pp (in blue). The predictions over the test data set DSgc|-s2 pp Were obtained from the linear regression model trained

on DSgci-s2_No_pp:

pronounced from a window size of 17 onwards, indicating that the
residues influencing fast backbone dynamics are mostly nearby in
the sequence, the window of 51 residues did give the best cross-
validation results while still accounting for increased disorder in
N- and C-terminal regions (see Methods). We selected this model
for the final DynaMine implementation.

DynaMine and traditional O/D prediction. To explore the
relation between dynamics and disorder, we examined the per-
formance of the dynamics-related Sk and S2 ,; values, as well
as results from existing disorder predictors (fUPredzs, PrDOS2
(ref. 29), RONN®’, PONDR VSL2 (ref. 31), FoldIndex*?
and ESpritz*?), with respect to reproducing enhanced DisProt
annotations for the sequences in the DSgcy.s, pp set (see Methods
and Fig. 3). The resulting receiver operating characteristic (ROC)
curve clearly shows that the chemical shift-derived Sk values
(Fig. 4a) correlate very well with the DisProt annotations (Area
Under the ROC Curve (AUC) of 0.916). The red curve almost
always dominates; the chemical shift-derived S, data can identify
disordered regions in the traditional binary O/D sense with the
highest accuracy. Based on the ROC curve, a threshold of 0.795 for
the S3 values gives the best distinction between traditional O/D
annotations; this corresponds well with the ‘crossover’ point of the
per-amino-acid propensities from Fig. 1. The black ROC curve
shows the performance of DynaMine, which in this case was
trained on DSpcrss no pp (excluding DisProt sequences). The
optimal S, threshold is 0.769 and matches the best Siq
threshold very closely. Of the existing disorder predictors, almost
all of which have been trained on or are related to DisProt in some

way, only the Espritz-NMR and PrDOS2 approaches perform
better than DynaMine, which is completely independent of
DisProt. In addition, these approaches often employ
sophisticated prediction algorithms that incorporate complex
information other than the simple amino-acid codes of the
protein sequence used in DynaMine. ESpritz, for instance, is a
consensus predictor based on complex bidirectional recurrent
neural networks with input features including evolutionary
information. PrDOS2 also takes into account evolutionary
information and sequence conservation by means of BLAST
profiles; as the winner of the CASP9 disorder-prediction
competition, it can be considered as one of the most
sophisticated existing disorder-prediction methods.

As the DSpcrs; pp set is small and biased towards proteins
studied using NMR, we also examined the performance of §2,; and
existing disorder predictors on a larger DisProt set (DSip pp) of
241 sequences where experimental methods with residue-level
resolution were used for O/D annotations (see Methods).
The resulting ROC curve (Fig. 4b) shows that on this larger and
more diverse set, the best-performing predictor is PrDOS2
(AUC of 0.811), followed by Espritz-NMR (AUC of 0.776).
Moreover, DynaMine (AUC of 0.773) performs excellently,
confirming the potential of the Sf)red values in identifying traditional
binary protein disorder annotations from a statistical backbone
dynamics angle without incorporating prior information on
disorder. This performance remains consistent across disordered
fragments of different length (see Methods), although DynaMine
especially excels at identifying short disordered fragments. In
addition, the predictions go well beyond what hydrophobicity scales
provide (see Methods).
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Biological relevance of the DynaMine predictions. To qualita-
tively assess the relationship between the predicted backbone
dynamics for proteins and their biological structure and function,
we tested DynaMine on a set of well-studied proteins covering the
full range of distinct structural and functional properties,
including folded domains, molten globules and fully disordered
regions that may fold upon binding. As is evident for the human
cellular tumour antigen p53 (Fig. 5a), DynaMine can identify the
boundaries of well-structured domains quite precisely: the DNA-
binding domain (DBD) and the tetramerization domain are pre-
dicted to be ordered, whereas the linkers connecting these regions
are highly dynamic. This ability to discriminate between domains
and linkers is even more evident in case of the large, hetero-
geneous CREB-binding protein (CBP, Supplementary Fig. S1 and

Supplementary Note 1). Within a structured region, as in p53
DBD, DynaMine is furthermore able to locate secondary structure
elements; most secondary structure elements present in the free
DBD correspond to peaks in the prediction pattern (see
Supplementary Fig. S2). Secondary structure elements stabilized
upon complex formation (p27, Supplementary Fig. S3 and
Supplementary Note 1) also generally correspond to peaks in the
prediction pattern. A range of additional case studies (human
calpastatin, HIV Nef, and the Phd and PaaA2 antitoxins (see
Supplementary Note 1 and Supplementary Figs S4-S7)) further
confirm that DynaMine is very good in distinguishing folded
domains from disordered/highly dynamic linker regions, as well
as in identifying flexible loop regions and secondary structure
elements within globular domains. In case of HIV Nef
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3

Supplementary Note 1 and Supplementary Figs S2 and S8 for full detail on histograms and annotation).

(Supplementary Fig. S5), the folded core of the protein is
assembled from secondary structure elements quite distantly
located from each other in the sequence; even then DynaMine
predicts them as peaks within the more dynamic flexible loop
regions.

The transactivation region (17-56) of p53 (Fig. 5a) is
composed of different interaction motifs, each mediating the
binding with multiple partners. This region is intrinsically
disordered in the unbound form of p53 but folds up into alpha
helices when binding to partners (for example, CBP/p300).
DynaMine seems to recognize the inherent capability of these
regions to fold up on binding, as it predicts scores intermediate
between those predicted for folded domains and disordered
regions. In CBP (Supplementary Fig. S1), similarly intermediate
values are observed for the NCBD molten globule domain,
whereas for p27 (Supplementary Fig. S3) the segment that folds
up on complex formation with cyclin A/CDK2 has elevated
values compared with the (disordered) remainder of the

6

molecule. These observations indicate that the absolute values
of the prediction might have meaning in the sense of domain
stability.

The prediction for adenovirus E1A, a host-regulatory viral hub
protein, demonstrates the ability of our method to sense at least
some interaction motifs (Fig. 5b). E1A is largely disordered with
the exception of the central zinc-finger/promoter-targeting
region; DynaMine renders the highest scores for this region.
Plenty of known host-regulatory linear motifs are embedded in
the disordered segments of its chain, and DynaMine identifies
most of these interaction motifs by predicting definite peaks,
indicating that they may have preformed structural elements. The
linker/spacer regions are in contrast correctly predicted to be
highly dynamic. The scores for known interaction sites thus
separate well from those calculated for the remaining non-
domain-disordered segments (Fig. 5b, inset histogram and
Supplementary Fig. S8), with the exception of residues at the
C-terminal region and the end of the FOXK1/K2-binding region.
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Similarly, the distinct peaks predicted in p53 C-terminal-
disordered region (Fig. 5a) correspond well to the short motifs
previously described to fold up on binding to their partners.

Discussion

With this work, we demonstrate that statistical analysis of NMR
data of proteins in solution can give quantitative insight into the
relationship between amino-acid sequence and backbone
dynamics. The DynaMine backbone dynamics predictor rests
on §? order parameters directly estimated from experimental data
content (NMR chemical shifts) and produces excellent results,
despite the simple linear prediction methodology it uses.
DynaMine is very fast and gives a continuous and subtle picture
of how amino-acid residues behave with respect to their backbone
rigidity and, by extension, to residue order and disorder. This is
exemplified by the per-amino-acid dynamics properties shown in
Fig. 1. Advances in the way the S? values are calculated from the
chemical shifts, and inclusion of other types of experimental
NMR data (for example, relaxation parameters) additionally have
great potential to further improve the conversion of NMR
parameters into per-residue dynamics information. These devel-
opments, in combination with the now well-established relation-
ship between protein dynamics and function, open up avenues to
add a new dimension to the sequence-only analysis of proteins
from genomics.

This is especially the case for IDPs, where dynamics has a key
role in determining their characteristics®*. The >50 predictors
published to date employ many different computational
principles but most of them rely on data from DisProt*.
Despite the recent development of, for example, meta-
predictors, improvements in the field are still highly necessary’.
The physical basis of protein disorder also remains unclear when
using these predictors, and we here confirm the suspicion that
actual values of the disorder-prediction scores have some direct
meaning themselves!® (see Methods). It is in this context
important to position the DynaMine predictions in relation to a
previous work®® that indicates a connection between predicted
free energy and disorder; DynaMine predicts dynamics as
observed for the proteins in our data set in their energetically
favourable states. We show that these energetically favourable
dynamics are also physically linked with structural disorder, thus
firmly establishing the link between the two. Our approach thus
overcomes the key limitations related to the binary treatment of
O/D and the source of disorder data; it is rooted in experimental
chemical shift data encompassing fast backbone dynamics, uses a
continuous scale for expressing backbone movements and avoids
the use of 3D structures. Even though especially NMR structures
are also a good source of information to train or tune
predictors'8, and structures can be used to predict S* values!’,
they do not represent the conformations of the protein in solution
for more dynamic regions. Specialist approaches with careful use
of experimental data are required in such cases®.

DynaMine can also pinpoint function-related features in
sequences. It defines the boundaries of folded domains and
secondary structure elements and seems to be sensitive to
different disordered states distinguished by their level of global
organization. Structural disorder was roughly classified into two
global types37: extended (random coil-like) and collapsed (molten
globule-type). DynaMine has the ability to outline molten globule
regions (for example, NCBD or CBP) embedded in a more
disordered structural environment. IDPs often recognize their
binding partners via short continuous sequence motifs, which are
frequently defined by local sequence conservation’®* and
structural bias towards the bound conformational state®~3.
DynaMine seems to be capable of picking up locally reduced

dynamics in these regions, which appear as peaks in the
prediction. For functional motifs that are not supposed to fold
up on binding, as in post-translational modification sites and
targeting motifs determining subcellular location, peaks are not
predicted. In some cases, clear minima even occur that indicate
the highly exposed nature of these sites, as in the segment of p53
bound by the ubiquitin ligase USP7 and its nuclear localization
signal motifs. DynaMine might therefore provide vital
information in correctly identifying and assigning types of
functional motifs from sequence, which will be the subject of a
future comprehensive analysis of correlations with data in the
ELM*? and MiniMotif*! databases.

Furthermore, the excellent performance of DynaMine suggests
that the dynamical characteristics of a residue might be
fundamentally encoded in the protein sequence. A recent large-
scale in silico study using molecular dynamics simulations from
3D protein structures showed that dynamics and function are
closely related*? and identified dynamics patterns in proteins (the
‘Dynasome’). Although the (experimental) S2,  order parameter is
related to fast (ps-ns timescale) backbone dynamics, DynaMine
shows a strong correlation with observed (binary) structural
disorder, which is more related to slower (up to high ps),
segmental motions of the polypeptide chain. This excellent
agreement probably comes from two distinct, albeit interrelated,
sources. First, it has been shown in the literature that fast local
motions and slower, segmental motions are tightly linked!>,
where collective fast motions make up larger-scale, slower
segmental rearrangements of the polypeptide chain. Second, the
chemical-shift-estimated Sk, are potentially linked to slower-
and larger-scale conformational exchange phenomena such as
transition between different secondary structures, as long as these
cause averaging of chemical shifts (see Methods). When we
predict S? from chemical shifts (and sequence), it represents a
mixture of fast and slower motions in unknown proportions,
which strengthens the physical meaning of the data underlying
DynaMine as a disorder predictor. This might also explain why it
works so well with a long (51 residue) window. In all, the use of
DynaMine opens up the enormous pool of available protein
sequences lacking structure information for similar dynamics
analysis. It may also give us important clues on diseases, in which
the mutations causing critical changes in the structure and/or
dynamics of IDPs lead to alterations in function and/or
aggregation of the protein®344,

To conclude, we contend that DynaMine provides independent
evidence and an unbiased picture of dynamics and structural
disorder. We anticipate that DynaMine will be used for assessing
and estimating the stability of various substrates (coil-like, molten
globule-like and even pre-molten globule-like) and, more
importantly, that it will be developed into a tool to assist the
prediction of functional regions.

Methods

Generation of the DSgcy.s, data set of S5, values. To ensure that the chemical-
shift values reflect proteins in physiological conditions, only BMRB entries that
fulfil the following criteria were retained: pH between 5.0 and 7.0, temperature
between 293.0 and 313.0 K, chemical shift data available for C, H and N atoms, and
no sample components present from the list in Supplementary Table S1. For each
unique monomeric protein sequence appearing in the resulting set of BMRB
entries, the entry with the most chemical-shift data was selected and read into the
CCPN framework®®. The chemical shifts were re-referenced based on the VASCO
procedure?® in case matching PDB coordinates were available, otherwise PANAV#”
was used. A SHIFTY file exported from the CCPN project was then forwarded to
the RCI server (www.randomcoilindex.com) and the results were stored locally.

Confirming the relationship between S;, and S values. The RCI software
calculates a per-residue RCI score for a given sequence for which chemical shift
data are available?!. This RCI score is zero for highly ordered residues and

increases to 0.55 for very dynamic residues. The RCI authors proposed a scaling
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formula (equation 1) to predict $2 order parameters (S2 wcr) directly from the
RCI score:

Sier = 1 —0.41In(1 + scorepcy.17.7) (1)

This scaling formula is based on the correlation between the RCI score and the S?
values derived from short molecular dynamics runs and was validated further on a
set of 12 proteins for which experimental S? order parameters were available?!

We co 2pared a list of 53 BMRB entries currently available and containing
backbone S* order parameters derived from amide nitrogen relaxation against the
whole BMRB to find entries with matching sequence, sample and sample
conditions as well as extensive chemical-shift assignments. This procedure resulted
in the DSgxp rcrs2 data set of 16 proteins (Table 1, Supplementary Table S2)
comprising a total of 1,581 amino acids (A (136), C (9), E (133), D (107), G (117),
F (57),1(86), H (36), K (117), M (29), L (183), N (67), Q (70), S (86), R (87), T (81),
W (19), V (117), Y (44)). One entry (bmr5991) overlaps with the set used in the
original RCI validation®!

This analysis confirmed the findings of Berjanskii et al?! that the Si¢,
estimations relate well to the experimentally determined SZ, values, with an overall
observed Pearson correlation of 0.685 for the DSgxp_rcr-s2 data set (Supplementary
Fig. S9A). Both S3; and S, cover mainly fast ps-ns dynamics; however,
experimental and predlctlon errors and the way the S2_ values are calculated from
the experimental relaxation data*® will result in differences in the produced values.
Of particular interest here is that there are variations in the dynamics range
covered, as slower (us and even higher) motions can be captured by the chemical-
shift data; this might account for the lower S, values at high 2 | (slower motions
are present and incorporated in the S4.), as well as the higher S3; values at low

EXP (slower motions and conformational preference deviate the chemical shift
from the ideal random coil value and increase S, perceived order).

For evaluation of the capacity of S, values to distinguish between ordered and
highly dynamic residues as indicated by the S2_ values, ROC curves were generated
for different cutoffs apphed to the Sexp value (different colours in Supplementary
Fig. S9B). Residues with S% o values lower than the cutoff are labelled ‘disordered’,
all other residues ‘ordered”. The ROC curve then reflects how well the Sicr value
performs in reproducing these ‘ordered’ and ‘disordered’ categories for the different
Sexp cutoffs. The results show that the Si values are very good at dlstlngulshlng
between these states for residues that are actually highly dynamic (with Sexp values
of 0.7 or lower) but that this ability is strongly reduced when residues with S exp
values >0.7 and <0.8 are included in the ‘disordered’ category. To produce the
ROC curve data in Supplementary Fig. S9B a cutoff ranging from 0.55 to 0.85 in
0.05 steps was applied on the S2_ values to convert them into two-state O/D

exp
annotations. For each S2_ cutoff, an ROC curve was then generated in relation to
the predicted data.

Propensity of amino acids in relation to order classes. We removed short
sequence fragments occurring with high frequency (such as present in His tags, see
Supplementary Table S3) from the main DSgcy.g, set and divided the resulting
216,456 Sk values into bins, with an §? value separation of at least 0.025 and
containing at least 7,500 residues each (Supplementary Table S4). The resulting 13
bins contained at least 28 points per amino acid. The propensity for each amino
acid for each bin was defined similarly to the approach used in GOR secondary
structure prediction®’, with a self-information difference calculated for each bin
and each amino-acid residue type (Equation 2):

I(AD; R) = log(fp.r/fu—p,r) +10g(fu—p/fp) (2)

The information difference I(AD;R) is calculated from the number of times a
residue R is present in a given bin D (fp ), the number of times residue R is present
in other bins (f, — pr), the total number of residues in the bin (fp) and the total
number of residues in all other bins (f, —p). We used a base 10 logarithm to
generate the values.

DynaMine backbone dynamics prediction. The DSyc;.s, data set was divided
into two subsets: DSgcr.s2 no_pp» Which excludes sequences with >90% sequence
identity with any sequence in any DisProt entry, and DSrcy.s>_pp, containing data
for all sequences identical to one in DisProt; these are joined into set
DSgcr-s2_union_pp (Table 1).

The DSgcr_s2 no_pp data are not biased in amino-acid composition and reflect
the SwissProt distribution (see Supplementary Fig. S10). It was then used to train
DynaMine (see Fig. 3) based on the linear regression algorithm in Weka 3.6.9°
with default parameters. Different regression models were trained using varying
sequence window sizes w; for example, at w equal to 7 the S, value of the central
amino acid and the amino-acid sequence starting at three amino acids before and
ending at three amino acids after the central residue are included as input to the
learning algorithm. To ensure that each sequence fragment of length w is included
only once in the model training, we constructed distributions for all the fragments
of length w in the training set and assigned an Sk, value corresponding to the
median of the distribution after removal of the outliers (the points falling outside
the interquartile range). S value distributions with a relative s.e. >25% were
discarded. The trained DynaMine predictor then takes as input sequence fragments
of size w and provides a prediction for the central element of the fragment (the
target residue). We assessed DynaMine performance by a 10-fold cross-validation

8

for each w varying between 5 and 51. In this approach, the DSgcr.s> no_pp data set
was partitioned into 10 subsamples; each of these was used in turn for testing the
model trained on the remaining nine subsamples (Fig. 2a/b). We also trained a
model on the complete DSgcr.s> no pp data set and tested it by predicting the SPred
values for the DSgcy.s2 pp data set (Fig. 2c/d).

Predictions for N- and C-terminal regions. If we define the N- and C-terminal
residues as the first and last 25 residues in the sequence (based on the 51
residue window size of the predictor), the distribution in DSrcrs2 no_pp Of S%{CI
values at the termini (Supplementary Fig. S11B) is skewed towards lower values
compared with the non-terminal regions (Supplementary Fig. S11A). The dis-
tribution of the Spred values reflects this bias, although the N- and C-terminal Smd
values rather overestimate the S, values; very few Spml values are <0.4
(Supplementary Fig. S12). The peak of most commonly observed values (around
0.9 for Si¢;) in contrast shifts to a lower value for S ; (around 0.8). The Dyna—
Mine prediction is based on overall statistics and therefore results in narrower S
distributions; the simple linear prediction model exemplifies the relevance of the
training data and directly reflects previous studies that identified the N- and
C-termini of proteins as more likely to be disordered and dynamic®2, with
‘almost all proteins (97%) ha[ving] some disordered residues detected within
terminal regions’

Independent data set. The independent data set DSyyp_pp contains DisProt
entries not in DSgcy.sz pp that were annotated by X-ray crystallography, NMR,
hydrogen-deuterium exchange and mass spectrometry-based high-resolution
hydrogen-deuterium exchange or high relative B-factor. We combined these
mostly ‘disorder’ annotations with ‘order’ information from the PDB (Fig. 3); for
all sequences that have monomeric NMR structures consisting of an ensemble of
models, residues were given an ‘order’ annotation if it was found in helix or beta-
strand conformation (as determined by STRIDE®?) in all of the models. All
residues without annotation were not used in the performance comparisons.

ROC curves. The DynaMine and Sk best performance point on the ROC curves
in Fig. 4a were selected as the closest points to the top left corner of the plot (the
ideal performance point: maximum true-positive rate (1) and minimum false-
positive rate (0)). The thresholds shown for the different disorder predictors are
those reported in the corresponding papers or web-server documentations.

Disorder predictors. Disorder predictions for ESpritz, IUPRED, PONDR VSL2
and RONN were obtained from the corresponding web servers. FoldIndex>?
does not provide values for the first and the last 25 residues of the input sequence;
we used a modified version that provides these values, ensuring that the values
for the rest of the sequence are identical with those provided by the original
FoldIndex. PrDOS2 is the advanced version of the PrDOS disorder-prediction
method?? and takes the evolutionary conservation of the input sequence into
account. It is not yet publicly available and we obtained the prediction results
directly from the inventor of the method.

Relating disorder prediction to S2_values. We also addressed the relevance of
dynamics and disorder predlctlons 1n the context of S2_ values. The DSgxp.s, set
contains 22 proteins for which experimental S order parameter values are avail-
able, excluding DSgcy.s, sequences (Supplementary Table S5). We subtracted the
values produced by the disorder predictors from 1.0 to obtain values matching the
§? scale (from 0 to 1), except for FoldIndex where values were used as they are.
Supplementary Figure S13A shows the linear correlation and RMSE between the
per-residue predictions and Sexp values. DynaMine and the Espritz X-ray and NMR
predictors give the best results. The reasonable agreement generated by the Espritz
predictors confirms previous findings about the capacity of disorder predictors to
relate to dynamicslg. However, all entries in the DSgxp._s, set have closely related
structural entries in the PDB. The Espritz approaches likely include information on
these structures, and <15% of the S? values DSgxp.g, contains are < 0.8, mostly
indicating loops in globular structures. Although the data set does, therefore, not
represent intermediate dynamics and disorder well, it is still useful to compare the
predictors to the Sexp values using a two-state ‘rigid’/‘highly dynamic’ distinction
similar to order/disorder, as this is a relative comparison and allows a different
examination of their performances in relation to dynamics. Supplementary Figure
S13B shows the AUC of the ROC curve for the predictors using different S
cutoffs to distinguish between ‘highly dynamic’ and ‘rigid’ residues. Higher values
indicate better predictions; the predictive capacity of all predictors strongly
decreases with increasing ngp cutoff, except for Espritz_DisProt and FoldIndex.
The PrDOS2 predictor gives the best performance (although not in an absolute
sense, see Supplementary Fig. S13A); this demonstrates the close connection
between disorder and dynamics. The next best results come from DynaMine and
the Espritz X-ray and NMR predictors. The relation between the disorder values
produced by these best disorder predictors and the actual backbone dynamics of
protein residues is evident from this analysis; it solidifies the conclusion that
dynamics and disorder are closely connected.
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Influence of disordered fragment length on prediction accuracy. We first 13. Liang, S. et al. Exploring the molecular design of protein interaction sites with
compared the content of DSgcy.s, to the DisProt database (release 6) in terms of molecular dynamics simulations and free energy calculations. Biochemistry
disordered fragment length. The lengths of the highly dynamic fragments in the (John Wiley & Sons) 48, 399-414 (2009).

DSgcrsz data set (defined as continuous residues with Valugs <.0.795) tend to be 14 Li, L., Uversky, V. N, Dunker, A. K. & Meroueh, S. O. A computational

shorter than the lgngth of dlsorderec.l fragments ann9tated in DisProt investigation of allostery in the catabolite activator protein. J. Am. Chem. Soc.

(Supplementary Fig. S14). We then investigated the influence of the disordered 129, 15668-15676 (2007).

fragment length on the predi'ction accuracy by subdividing the DSHT’DfDP .into 15. Henzler-Wildman, K. A. et al. A hierarchy of timescales in protein dynamics is

subgroups of short (<20 amino acids), long (between 20 and 50 amino acids) and linked to enzyme catalysis. Nature 450, 913-916 (2007)

extremely long (> 50 amino acids) fragments, and re-ran the ROC curve analysis 16 l\l/r; Kwick ¥ yll' s T. & 1’ S al biologv b .

as described in Fig. 4b (Supplementary Fig. S15). The DynaMine prediction - Markwick, P. R. L Ma 1avin, L. Nilges, M. tructural biology by NMR:

accuracy for the long and extremely long fragments is comparable to the best structure, dynarfucs, ar}d interactions. PLoS Comput. Bzol..4,. €1000168 (2008).

predictors, whereas on the short fragments it does better than most. 17. Zhang, F. & Brusc'hweller, R. Cont?.ct model for the prediction of NMR N-H

order parameters in globular proteins. J. Am. Chem. Soc. 124, 12654-12655
(2002).

Comparing DynaMine predictions to hydrophobicity scales. To ensure that 18. Ota, M. et al. An assignment of intrigsically disordered regions of proteins

DynaMine does not only reflect hydrophobicity, we performed an analysis of 22 based on NMR structures. J. Struct. Biol. 181, 29-36 (2013). )

hydrophobicity scales using a 15-residue window with no scaling for the sequences ~ 19- Daughdrill, G. W., Borcherds, W. M. & Wu, H. Disorder predictors also predict

in DSyyp_pp- Some of the hydrophobicity-based predictors indeed perform excel- backbone dynamics for a family of disordered proteins. PloS One 6, €29207 (2011).

lently with respect to disorder (Supplementary Fig. S16), although DynaMine 20. Dyson, H. J. Expanding the proteome: disordered and alternatively folded

outperforms them. DynaMine is, however, a fast backbone dynamics predictor, and proteins. Q. Rev. Biophys. 44, 467-518 (2011).

we also compared the hydrophobicity predictions against the 2 values. To 21. Berjanskii, M. V. & Wishart, D. S. Application of the random coil index to

normalize the hydrophobicity values, we first applied a normalization function to studying protein flexibility. J.Biomol. NMR 40, 31-48 (2008).

obtain hydrophobicity values ranging from the lowest and highest ngp values and  22. Ulrich, E. et al. BioMagResBank. Nucleic Acids Res. 36, D402-D408 (2008).

reversed the hydrophobicity values in case of negative linear correlation so as to 23. Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19,

obtain the lowest RMSE. The results of this analysis are shown in Supplementary 26-59 (2001).

Fig. S17 (similar to Supplementary Fig. S13A), and they show that hydrophobicity ~ 24. Dunker, A. K. et al. The unfoldomics decade: an update on intrinsically

alone does not reflect the Sﬁxp values at all. This demonstrates that the DynaMine disordered proteins. BMC Genomics 9(Suppl 2): S1 (2008).

predictions go well beyond what traditional hydrophobicity scales can provide. 25. Linding, R., Russell, R. B., Neduva, V. & Gibson, T. J. GlobPlot: exploring

protein sequences for globularity and disorder. Nucleic Acids Res. 31,
3701-3708 (2003).

DynaMine availability. The DynaMine predictor model file to be used within the 26, Holladay, N. B., Kinch, L. N. & Grishin, N. V. Optimization of linear disorder

Weka framework is available upon request f‘ro¥n th? authors. Th-e Weka command predictors yields tight association between crystallographic disorder and

lme_can be used to get the Dyn:aMme predictions in the following way: hydrophobicity. Protein Sci. 16, 2140-2152 (2007).
java classpath weka.jar . . 27. Uversky, V. N. Natively unfolded proteins: a point where biology waits for
vlweka.classz.ﬁers. .functions.LinearRegression -.T <the physics. Protein Sci. 11, 739-756 (2002).
input sequence in ARFF format> -1 <the DynaMine model 28. Dosztanyi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the
file> -p 1-51 diction of intrinsically unstructured regions of proteins based on estimated

An example of input sequence (for p53) in the ARFF format (command line predic nsically un 5 P

option -T) compatible with the DynaMine predictor is provided as Supplementary energy content. Bioinformatics 21, 3433-3434 (2005).

Data 1 (dataset.arff). 29. Ishida, T. & Kinoshita, K. PrDOS: prediction of disordered protein regions
We also provide as Supplementary Software 1 a wrapper python script from amino acid sequence. Nucle.zc Acids Res. 35, W460-W464 (2007). '

(wrapper_predict.py) that can take a FASTA file as input, to be launched as follows. 30. Yang,' Z. R, Thomson, R., MCNCII’ P. & Esnouf, R. M. RONN: th? bio-basis
python wrapper_predict.py myProtein.fasta fgnctlon neura.l nethork teghnlql{e'applled ‘to the detection of natively
In the Supplementary Software 2 (config.py) the javacmd variable should be dlsorderéd reglons in protelns.-Bzomforn?atz.cs 21, 3369-3376 (2005). -

modified to the system requirements. The wrapper_predict.py script produces the ~ 31- Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P. & Dunker, A. K. Exploiting

input for the Weka framework and manages the Weka output through two python heterogeneous sequence properties improves prediction of protein disorder.

scripts (Supplementary Software 3, produce_input.py and Supplementary Software Proteins 61(Suppl 7): 176-182 (2005).

4, print_predictions.py) with 32. Prilusky, J. et al. FoldIndex: a simple tool to predict whether a given protein

BioPython dependencies. sequence is intrinsically unfolded. Bioinformatics 21, 3435-3438 (2005).

33. Walsh, I, Martin, A. J., Di Domenico, T. & Tosatto, S. C. ESpritz: accurate and
fast prediction of protein disorder. Bioinformatics 28, 503-509 (2012).
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