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From protein sequence to dynamics and disorder
with DynaMine
Elisa Cilia1,2, Rita Pancsa3,4, Peter Tompa2,3,4, Tom Lenaerts1,2,5 & Wim F. Vranken2,3,4

Protein function and dynamics are closely related; however, accurate dynamics information is

difficult to obtain. Here based on a carefully assembled data set derived from experimental

data for proteins in solution, we quantify backbone dynamics properties on the amino-acid

level and develop DynaMine—a fast, high-quality predictor of protein backbone dynamics.

DynaMine uses only protein sequence information as input and shows great potential in

distinguishing regions of different structural organization, such as folded domains, disordered

linkers, molten globules and pre-structured binding motifs of different sizes. It also identifies

disordered regions within proteins with an accuracy comparable to the most sophisticated

existing predictors, without depending on prior disorder knowledge or three-dimensional

structural information. DynaMine provides molecular biologists with an important new

method that grasps the dynamical characteristics of any protein of interest, as we show here

for human p53 and E1A from human adenovirus 5.
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P
roteins derive their vast arrays of functions from the
numerous interactions they have with each other and with
other molecules in cells and organisms. These interactions

are understood through knowledge of the three-dimensional (3D)
structure of proteins in complex with their binding partner(s), an
approach that is very successful and has led to many scientific
breakthroughs. The dynamics of proteins, however, is also
essential for their function, as exemplified by intrinsically
disordered proteins (IDPs)1,2: they adopt an essential role in
many biological processes and are implicated in pathogenic
processes such as amyloid plaque formation in Alzheimer’s. IDPs
function as an ensemble of conformations and have no consistent
3D structure; their amino-acid residues will sample many
different conformations, although they can still prefer certain
conformations to others as determined by their sequence context3.

Protein disorder is therefore related to dynamics; however, its
identification and interpretation still pose a significant challenge.
The key resource in the field, the DisProt database4, stores
information on disordered regions through binary order/disorder
(O/D) annotations on the amino-acid-residue level, which leads to
the impression that a residue can behave only in two discrete
ways. Such a clear distinction cannot be made; disorder is context-
dependent, and many residues in non-globular proteins display a
‘dual personality’5, where they exhibit a range of behaviours
depending on environmental conditions. Within disorder, there
are also distinctions to be made: a disordered residue can occur in
many different conformational states and can occupy these with
varying frequencies6–8. Another limitation is that the disordered
regions in DisProt were often serendipitously observed and may
therefore cover only a small and probably unrepresentative
fraction of all disordered regions present in proteins. The 450
disorder predictors published to date9 were almost all trained or
tuned on DisProt annotations, and despite employing a large
variety of computational principles and different subsets of
carefully selected (structural) data, the resulting algorithms may
not have the capacity to generalize beyond these data.

Nuclear magnetic resonance (NMR) spectroscopy is the key
technique to study dynamics and conformational states of
proteins in solution at atomic resolution10,11. NMR-based case
studies12–14 have indicated that the level of conformational
exchange of amino-acid residues is directly related to their
dynamics, with fast dynamics indicating fast interchange between
many (different) conformations. Information on fast local
dynamics on the pico- to nano-second timescale can be
obtained from NMR spin relaxation measurements; such fast
motions are required for slower timescale dynamics such as
conformational transitions15,16. These relaxation measurements
entail, however, a considerable experimental effort, and the data
are not routinely deposited in public archives. Much more
accessible are the atomic-level chemical shifts, which are
exquisitely sensitive to their environment. These chemical shifts
give an averaged picture of local dynamics; however, they are

abundantly available for a very diverse collection of proteins
ranging from fully folded to disordered ones.

To exploit this vast amount of data, we transform a carefully
curated collection of chemical shifts for 2,015 of such proteins
into a data set containing per-residue information on the fast
movements of the protein backbone. This unique resource is
directly rooted in experimental data closely connected to
dynamics, gives a continuous and subtle picture of how amino-
acid residues behave dynamically, and avoids the use of 3D
structures17,18. It provides a statistical and quantitative view of
the backbone dynamics properties for each amino acid that can
be used to differentiate between the amino-acid tendencies to
promote order or disorder. Using a linear regression approach,
we construct DynaMine, an entirely novel method to accurately
predict protein backbone dynamics directly from protein
sequence. DynaMine identifies protein disorder as well as the
most sophisticated existing predictors, but without using prior
disorder information, instead depending on the underlying
physical dynamics data. In doing so, it so firmly establishes the
long anticipated link between dynamics of the polypeptide chain
and structural disorder19,20. More importantly, it is the first direct
predictor of dynamics from sequence, and we show through a
range of case studies that it has great potential in distinguishing
regions of different structural organization, such as folded
domains, disordered linkers, structurally ambiguous molten
globules and pre-structured binding motifs of different sizes.

Results
Amino-acid backbone dynamics behaviour. The core data set
for the current work consists of backbone N-H S2 order para-
meter (S2RCI) values estimated from chemical shift values with the
Random Coil Index (RCI) software21 (see Methods) for 218,259
residues in 2,015 proteins from the BioMagResBank (BMRB)22

(DSRCI-S2, Table 1). Only those proteins were included that fulfil
certain criteria regarding available chemical shift data, sample
content and sample conditions (see Methods). S2 order
parameters represent how restricted the movement of an
atomic bond vector is with respect to the molecular reference
frame. A value of 1.0 signifies complete order (stable
conformation), whereas a value of 0.0 means fully random
bond vector movement (highly dynamic). The S2RCI values capture
motions from femtosecond up to nanosecond and possibly to
higher timescales21 and correspond with reasonable accuracy to
experimentally determined S2 order parameters (S2exp), a finding
we reconfirmed (see Methods).

In an exploratory analysis, we filtered the DSRCI-S2 data and
calculated for each amino acid their statistical propensities towards
adopting particular S2RCI values (see Methods); positive values indicate
that an amino acid prefers to adopt that particular S2RCI value (higher
propensity), negative values that it does not. These propensities are
shown per residue and S2RCI value class in Fig. 1, where we divided the

Table 1 | List of data sets and their content (also see Fig. 3).

Data set (DS) Proteins Residues Details

EXP-RCI-S2 16 1,582 Chemical shifts and experimental S2 order parameters available
RCI-S2 2,015 218,259 Chemical shifts available
RCI-S2_DP 50 3,263 RCI-S2 set overlapping with 46 DisProt entries
RCI-S2_NO_DP 1,902 207,617 RCI-S2 set without DisProt
RCI-S2_UNION_DP 1,952 210,880 Combination of RCI-S2_DP and NO_DP sets
EXP-S2 21 2,340 Experimental S2 order parameters available
IND_DP 241 17,078 DisProt entries enhanced with PDB information for ‘order’ states not in RCI-S2_DP

RCI, random coil index; EXP, experimental; DP, DisProt.
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amino acids into ordered (Cys, Phe, Ile, Leu, Val, Trp, Tyr) (Fig. 1a),
neutral (Ala, Glu, Lys, Met, Gln, Arg, Thr) (Fig. 1b) and disordered
(Asp, Gly, His, Asn, Pro, Ser) (Fig. 1c) types.

The ordered residues show very similar propensities (Fig. 1a);
they prefer backbone rigidity (S2RCI values40.85) and have strong
negative propensities for a dynamic backbone (low S2RCI values).
The one exception to this general trend is Leu, which has neutral
propensity for very high S2RCI values 40.9 and is less indisposed
towards adopting highly dynamic states; this might indicate it is

typically more involved in dynamic processes. The amino acids in
this group exactly match prior knowledge about order-promoting
amino acids23–25, which is related to hydrophobicity as was
already established in the context of protein disorder26,27 but are
here quantified according to their backbone dynamics behaviour
in proteins.

The propensities for neutral residues remain close to zero
(Fig. 1b). Some have slight propensities towards backbone
rigidity: Ala, Arg, Gln, Glu and Lys have a preference for S2RCI
values of 0.85, whereas Thr has a slight tendency to adopt very
high S2RCI values. His and Met on the other hand have increased
propensities for very low S2RCI values, indicating their frequent
occurrence in regions with a highly dynamic backbone.

The residues we classified as disordered have neutral or negative
propensities for a rigid backbone (Fig. 1c) and increased
propensities for a more dynamic backbone (S2RCI values o0.8);
Gly and Ser (the most disorder-promoting residues23,25) maintain
this preference for a highly dynamic backbone (very low S2RCI
values), whereas for Pro it drops to neutral. The profiles for Asp and
Asn are interesting, as despite their small and hydrophilic sidechains
they lack a strong propensity for highly dynamic states, possibly
because of their capacity to form order-promoting sidechain to
backbone hydrogen bonds. Asn has mostly neutral propensities,
with a somewhat elevated propensity for S2RCI values around 0.8.
Asp, on the other hand, has a very low propensity for S2RCI values
o0.5, and an increased propensity for the 0.6–0.7 region. The
typically negative charge of the carboxylic acid sidechain group in
Asp could be responsible for this striking difference.

These dynamics profiles show that differences between the
classical order and disorder-promoting behaviour of amino acids
can be quantified and identified based on the S2RCI order parameters.
Interestingly, the propensities for the ordered and disordered types
switch side in the intermediate dynamics zone (grey zone in Fig. 1);
this indicates the importance of this backbone dynamics region in
determining amino-acid behaviour and highlights that it is not
realistic to classify S2 values, or disorder, in a binary sense: their
spread is continuous, and applying a discrete cutoff imposes a naive
meaning to the actual residue behaviour. Further improvements in
the methodology to obtain dynamics information from chemical
shifts, and inclusion of additional NMR data, will help to shed light
on how each individual amino acid behaves with respect to
disorder. It is however clear that the DSRCI-S2 data constitute a
unique statistical resource on backbone dynamics in relation to
individual amino acids.

The linear backbone dynamics predictor DynaMine. The
DSRCI-S2 data set enabled us to develop DynaMine, a predictor of
fast backbone dynamics from protein sequence only. We separated
the DSRCI-S2 data set into two subsets: DSRCI-S2_NO_DP, with only
sequences that have o90% sequence overlap with DisProt, and
DSRCI-S2_DP, with sequences that have DisProt annotations
(Table 1). The DSRCI-S2_NO_DP data set was then used to train
different linear regression models based on the size of the
sequence window around the target amino acid (where a window
size of, for example, 7 means that three amino acids on each side
of the target amino acid are included). The performance of each
predictor was evaluated by 10-fold cross-validation (see Methods).
The linear correlation and Root Mean Squared Error (RMSE)
(Fig. 2a,b), between the predicted S2 order parameters (S2pred) and
the actual S2RCI values, improves as more of the amino-acid
sequence context is taken into account. This is also evident from a
parallel evaluation where the whole DSRCI-S2_NO_DP data set was
used for training, all sequences in the DSRCI-S2_DP data set pre-
dicted and the resulting S2pred compared with the S2RCI values
(Fig. 2c,d, blue). Although the improvements become less

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Legend

Cys
lle
Leu
Phe
Trp
Tyr
Val

Legend

Ala
Arg
Gln
Glu
His
Met
Lys
Thr

Legend

Asp
Asn
Gly
Pro
Ser

In
fo

rm
at

io
n 

di
ffe

re
nc

e

SRCI value class2

a

b

c

Figure 1 | Dynamics propensity per amino acid. Information difference

per S2RCI-based order class for amino acids that prefer order (a), are neutral

(b) or prefer disorder (c). The grey zone indicates the intermediate

dynamics zone between 0.70 and 0.85.
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pronounced from a window size of 17 onwards, indicating that the
residues influencing fast backbone dynamics are mostly nearby in
the sequence, the window of 51 residues did give the best cross-
validation results while still accounting for increased disorder in
N- and C-terminal regions (see Methods). We selected this model
for the final DynaMine implementation.

DynaMine and traditional O/D prediction. To explore the
relation between dynamics and disorder, we examined the per-
formance of the dynamics-related S2RCI and S2pred values, as well
as results from existing disorder predictors (IUPred28, PrDOS2
(ref. 29), RONN30, PONDR VSL2 (ref. 31), FoldIndex32

and ESpritz33), with respect to reproducing enhanced DisProt
annotations for the sequences in the DSRCI-S2_DP set (see Methods
and Fig. 3). The resulting receiver operating characteristic (ROC)
curve clearly shows that the chemical shift-derived S2RCI values
(Fig. 4a) correlate very well with the DisProt annotations (Area
Under the ROC Curve (AUC) of 0.916). The red curve almost
always dominates; the chemical shift-derived S2RCI data can identify
disordered regions in the traditional binary O/D sense with the
highest accuracy. Based on the ROC curve, a threshold of 0.795 for
the S2RCIvalues gives the best distinction between traditional O/D
annotations; this corresponds well with the ‘crossover’ point of the
per-amino-acid propensities from Fig. 1. The black ROC curve
shows the performance of DynaMine, which in this case was
trained on DSRCI-S2_NO_DP (excluding DisProt sequences). The
optimal S2pred threshold is 0.769 and matches the best S2RCI
threshold very closely. Of the existing disorder predictors, almost
all of which have been trained on or are related to DisProt in some

way, only the Espritz-NMR and PrDOS2 approaches perform
better than DynaMine, which is completely independent of
DisProt. In addition, these approaches often employ
sophisticated prediction algorithms that incorporate complex
information other than the simple amino-acid codes of the
protein sequence used in DynaMine. ESpritz, for instance, is a
consensus predictor based on complex bidirectional recurrent
neural networks with input features including evolutionary
information. PrDOS2 also takes into account evolutionary
information and sequence conservation by means of BLAST
profiles; as the winner of the CASP9 disorder-prediction
competition, it can be considered as one of the most
sophisticated existing disorder-prediction methods.

As the DSRCI-S2_DP set is small and biased towards proteins
studied using NMR, we also examined the performance of S2pred and
existing disorder predictors on a larger DisProt set (DSIND_DP) of
241 sequences where experimental methods with residue-level
resolution were used for O/D annotations (see Methods).
The resulting ROC curve (Fig. 4b) shows that on this larger and
more diverse set, the best-performing predictor is PrDOS2
(AUC of 0.811), followed by Espritz-NMR (AUC of 0.776).
Moreover, DynaMine (AUC of 0.773) performs excellently,
confirming the potential of the S2pred values in identifying traditional
binary protein disorder annotations from a statistical backbone
dynamics angle without incorporating prior information on
disorder. This performance remains consistent across disordered
fragments of different length (see Methods), although DynaMine
especially excels at identifying short disordered fragments. In
addition, the predictions go well beyond what hydrophobicity scales
provide (see Methods).
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Biological relevance of the DynaMine predictions. To qualita-
tively assess the relationship between the predicted backbone
dynamics for proteins and their biological structure and function,
we tested DynaMine on a set of well-studied proteins covering the
full range of distinct structural and functional properties,
including folded domains, molten globules and fully disordered
regions that may fold upon binding. As is evident for the human
cellular tumour antigen p53 (Fig. 5a), DynaMine can identify the
boundaries of well-structured domains quite precisely: the DNA-
binding domain (DBD) and the tetramerization domain are pre-
dicted to be ordered, whereas the linkers connecting these regions
are highly dynamic. This ability to discriminate between domains
and linkers is even more evident in case of the large, hetero-
geneous CREB-binding protein (CBP, Supplementary Fig. S1 and

Supplementary Note 1). Within a structured region, as in p53
DBD, DynaMine is furthermore able to locate secondary structure
elements; most secondary structure elements present in the free
DBD correspond to peaks in the prediction pattern (see
Supplementary Fig. S2). Secondary structure elements stabilized
upon complex formation (p27, Supplementary Fig. S3 and
Supplementary Note 1) also generally correspond to peaks in the
prediction pattern. A range of additional case studies (human
calpastatin, HIV Nef, and the Phd and PaaA2 antitoxins (see
Supplementary Note 1 and Supplementary Figs S4–S7)) further
confirm that DynaMine is very good in distinguishing folded
domains from disordered/highly dynamic linker regions, as well
as in identifying flexible loop regions and secondary structure
elements within globular domains. In case of HIV Nef
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(Supplementary Fig. S5), the folded core of the protein is
assembled from secondary structure elements quite distantly
located from each other in the sequence; even then DynaMine
predicts them as peaks within the more dynamic flexible loop
regions.

The transactivation region (17–56) of p53 (Fig. 5a) is
composed of different interaction motifs, each mediating the
binding with multiple partners. This region is intrinsically
disordered in the unbound form of p53 but folds up into alpha
helices when binding to partners (for example, CBP/p300).
DynaMine seems to recognize the inherent capability of these
regions to fold up on binding, as it predicts scores intermediate
between those predicted for folded domains and disordered
regions. In CBP (Supplementary Fig. S1), similarly intermediate
values are observed for the NCBD molten globule domain,
whereas for p27 (Supplementary Fig. S3) the segment that folds
up on complex formation with cyclin A/CDK2 has elevated
values compared with the (disordered) remainder of the

molecule. These observations indicate that the absolute values
of the prediction might have meaning in the sense of domain
stability.

The prediction for adenovirus E1A, a host-regulatory viral hub
protein, demonstrates the ability of our method to sense at least
some interaction motifs (Fig. 5b). E1A is largely disordered with
the exception of the central zinc-finger/promoter-targeting
region; DynaMine renders the highest scores for this region.
Plenty of known host-regulatory linear motifs are embedded in
the disordered segments of its chain, and DynaMine identifies
most of these interaction motifs by predicting definite peaks,
indicating that they may have preformed structural elements. The
linker/spacer regions are in contrast correctly predicted to be
highly dynamic. The scores for known interaction sites thus
separate well from those calculated for the remaining non-
domain-disordered segments (Fig. 5b, inset histogram and
Supplementary Fig. S8), with the exception of residues at the
C-terminal region and the end of the FOXK1/K2-binding region.
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Similarly, the distinct peaks predicted in p53 C-terminal-
disordered region (Fig. 5a) correspond well to the short motifs
previously described to fold up on binding to their partners.

Discussion
With this work, we demonstrate that statistical analysis of NMR
data of proteins in solution can give quantitative insight into the
relationship between amino-acid sequence and backbone
dynamics. The DynaMine backbone dynamics predictor rests
on S2 order parameters directly estimated from experimental data
content (NMR chemical shifts) and produces excellent results,
despite the simple linear prediction methodology it uses.
DynaMine is very fast and gives a continuous and subtle picture
of how amino-acid residues behave with respect to their backbone
rigidity and, by extension, to residue order and disorder. This is
exemplified by the per-amino-acid dynamics properties shown in
Fig. 1. Advances in the way the S2 values are calculated from the
chemical shifts, and inclusion of other types of experimental
NMR data (for example, relaxation parameters) additionally have
great potential to further improve the conversion of NMR
parameters into per-residue dynamics information. These devel-
opments, in combination with the now well-established relation-
ship between protein dynamics and function, open up avenues to
add a new dimension to the sequence-only analysis of proteins
from genomics.

This is especially the case for IDPs, where dynamics has a key
role in determining their characteristics34. The 450 predictors
published to date employ many different computational
principles but most of them rely on data from DisProt4.
Despite the recent development of, for example, meta-
predictors, improvements in the field are still highly necessary9.
The physical basis of protein disorder also remains unclear when
using these predictors, and we here confirm the suspicion that
actual values of the disorder-prediction scores have some direct
meaning themselves19 (see Methods). It is in this context
important to position the DynaMine predictions in relation to a
previous work35 that indicates a connection between predicted
free energy and disorder; DynaMine predicts dynamics as
observed for the proteins in our data set in their energetically
favourable states. We show that these energetically favourable
dynamics are also physically linked with structural disorder, thus
firmly establishing the link between the two. Our approach thus
overcomes the key limitations related to the binary treatment of
O/D and the source of disorder data; it is rooted in experimental
chemical shift data encompassing fast backbone dynamics, uses a
continuous scale for expressing backbone movements and avoids
the use of 3D structures. Even though especially NMR structures
are also a good source of information to train or tune
predictors18, and structures can be used to predict S2 values17,
they do not represent the conformations of the protein in solution
for more dynamic regions. Specialist approaches with careful use
of experimental data are required in such cases36.

DynaMine can also pinpoint function-related features in
sequences. It defines the boundaries of folded domains and
secondary structure elements and seems to be sensitive to
different disordered states distinguished by their level of global
organization. Structural disorder was roughly classified into two
global types37: extended (random coil-like) and collapsed (molten
globule-type). DynaMine has the ability to outline molten globule
regions (for example, NCBD or CBP) embedded in a more
disordered structural environment. IDPs often recognize their
binding partners via short continuous sequence motifs, which are
frequently defined by local sequence conservation38,39 and
structural bias towards the bound conformational state6–8.
DynaMine seems to be capable of picking up locally reduced

dynamics in these regions, which appear as peaks in the
prediction. For functional motifs that are not supposed to fold
up on binding, as in post-translational modification sites and
targeting motifs determining subcellular location, peaks are not
predicted. In some cases, clear minima even occur that indicate
the highly exposed nature of these sites, as in the segment of p53
bound by the ubiquitin ligase USP7 and its nuclear localization
signal motifs. DynaMine might therefore provide vital
information in correctly identifying and assigning types of
functional motifs from sequence, which will be the subject of a
future comprehensive analysis of correlations with data in the
ELM40 and MiniMotif41 databases.

Furthermore, the excellent performance of DynaMine suggests
that the dynamical characteristics of a residue might be
fundamentally encoded in the protein sequence. A recent large-
scale in silico study using molecular dynamics simulations from
3D protein structures showed that dynamics and function are
closely related42 and identified dynamics patterns in proteins (the
‘Dynasome’). Although the (experimental) S2exp order parameter is
related to fast (ps-ns timescale) backbone dynamics, DynaMine
shows a strong correlation with observed (binary) structural
disorder, which is more related to slower (up to high ms),
segmental motions of the polypeptide chain. This excellent
agreement probably comes from two distinct, albeit interrelated,
sources. First, it has been shown in the literature that fast local
motions and slower, segmental motions are tightly linked15,
where collective fast motions make up larger-scale, slower
segmental rearrangements of the polypeptide chain. Second, the
chemical-shift-estimated S2RCI are potentially linked to slower-
and larger-scale conformational exchange phenomena such as
transition between different secondary structures, as long as these
cause averaging of chemical shifts (see Methods). When we
predict S2 from chemical shifts (and sequence), it represents a
mixture of fast and slower motions in unknown proportions,
which strengthens the physical meaning of the data underlying
DynaMine as a disorder predictor. This might also explain why it
works so well with a long (51 residue) window. In all, the use of
DynaMine opens up the enormous pool of available protein
sequences lacking structure information for similar dynamics
analysis. It may also give us important clues on diseases, in which
the mutations causing critical changes in the structure and/or
dynamics of IDPs lead to alterations in function and/or
aggregation of the protein43,44.

To conclude, we contend that DynaMine provides independent
evidence and an unbiased picture of dynamics and structural
disorder. We anticipate that DynaMine will be used for assessing
and estimating the stability of various substrates (coil-like, molten
globule-like and even pre-molten globule-like) and, more
importantly, that it will be developed into a tool to assist the
prediction of functional regions.

Methods
Generation of the DSRCI-S2 data set of S2RCI values. To ensure that the chemical-
shift values reflect proteins in physiological conditions, only BMRB entries that
fulfil the following criteria were retained: pH between 5.0 and 7.0, temperature
between 293.0 and 313.0 K, chemical shift data available for C, H and N atoms, and
no sample components present from the list in Supplementary Table S1. For each
unique monomeric protein sequence appearing in the resulting set of BMRB
entries, the entry with the most chemical-shift data was selected and read into the
CCPN framework45. The chemical shifts were re-referenced based on the VASCO
procedure46 in case matching PDB coordinates were available, otherwise PANAV47

was used. A SHIFTY file exported from the CCPN project was then forwarded to
the RCI server (www.randomcoilindex.com) and the results were stored locally.

Confirming the relationship between S2RCI and S2expvalues. The RCI software
calculates a per-residue RCI score for a given sequence for which chemical shift
data are available21. This RCI score is zero for highly ordered residues and
increases to 0.55 for very dynamic residues. The RCI authors proposed a scaling
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formula (equation 1) to predict S2 order parameters (S2RCI) directly from the
RCI score:

S2RCI ¼ 1� 0:4 lnð1þ scoreRCI:17:7Þ ð1Þ
This scaling formula is based on the correlation between the RCI score and the S2

values derived from short molecular dynamics runs and was validated further on a
set of 12 proteins for which experimental S2 order parameters were available21.

We compared a list of 53 BMRB entries currently available and containing
backbone S2 order parameters derived from amide nitrogen relaxation against the
whole BMRB to find entries with matching sequence, sample and sample
conditions as well as extensive chemical-shift assignments. This procedure resulted
in the DSEXP-RCI-S2 data set of 16 proteins (Table 1, Supplementary Table S2)
comprising a total of 1,581 amino acids (A (136), C (9), E (133), D (107), G (117),
F (57), I (86), H (36), K (117), M (29), L (183), N (67), Q (70), S (86), R (87), T (81),
W (19), V (117), Y (44)). One entry (bmr5991) overlaps with the set used in the
original RCI validation21.

This analysis confirmed the findings of Berjanskii et al.21 that the S2RCI
estimations relate well to the experimentally determined S2exp values, with an overall
observed Pearson correlation of 0.685 for the DSEXP-RCI-S2 data set (Supplementary
Fig. S9A). Both S2RCI and S2exp cover mainly fast ps-ns dynamics; however,
experimental and prediction errors and the way the S2exp values are calculated from
the experimental relaxation data48 will result in differences in the produced values.
Of particular interest here is that there are variations in the dynamics range
covered, as slower (ms and even higher) motions can be captured by the chemical-
shift data; this might account for the lower S2RCI values at high S2exp (slower motions
are present and incorporated in the S2RCI), as well as the higher S

2
RCI values at low

S2exp (slower motions and conformational preference deviate the chemical shift
from the ideal random coil value and increase S2RCI perceived order).

For evaluation of the capacity of S2RCI values to distinguish between ordered and
highly dynamic residues as indicated by the S2exp values, ROC curves were generated
for different cutoffs applied to the S2exp value (different colours in Supplementary
Fig. S9B). Residues with S2exp values lower than the cutoff are labelled ‘disordered’,
all other residues ‘ordered’. The ROC curve then reflects how well the S2RCI value
performs in reproducing these ‘ordered’ and ‘disordered’ categories for the different
S2exp cutoffs. The results show that the S2RCI values are very good at distinguishing
between these states for residues that are actually highly dynamic (with S2exp values
of 0.7 or lower) but that this ability is strongly reduced when residues with S2exp
values 40.7 and o0.8 are included in the ‘disordered’ category. To produce the
ROC curve data in Supplementary Fig. S9B a cutoff ranging from 0.55 to 0.85 in
0.05 steps was applied on the S2exp values to convert them into two-state O/D
annotations. For each S2exp cutoff, an ROC curve was then generated in relation to
the predicted data.

Propensity of amino acids in relation to order classes. We removed short
sequence fragments occurring with high frequency (such as present in His tags, see
Supplementary Table S3) from the main DSRCI-S2 set and divided the resulting
216,456 S2RCI values into bins, with an S2 value separation of at least 0.025 and
containing at least 7,500 residues each (Supplementary Table S4). The resulting 13
bins contained at least 28 points per amino acid. The propensity for each amino
acid for each bin was defined similarly to the approach used in GOR secondary
structure prediction49, with a self-information difference calculated for each bin
and each amino-acid residue type (Equation 2):

IðDD;RÞ ¼ logðfD;R=fn�D;RÞþ logðfn�D=fDÞ ð2Þ
The information difference IðDD;RÞ is calculated from the number of times a
residue R is present in a given bin D (fD;R), the number of times residue R is present
in other bins (fn�D;R), the total number of residues in the bin (fD) and the total
number of residues in all other bins (fn�D). We used a base 10 logarithm to
generate the values.

DynaMine backbone dynamics prediction. The DSRCI-S2 data set was divided
into two subsets: DSRCI-S2_NO_DP, which excludes sequences with 490% sequence
identity with any sequence in any DisProt entry, and DSRCI-S2_DP, containing data
for all sequences identical to one in DisProt; these are joined into set
DSRCI-S2_UNION_DP (Table 1).

The DSRCI_S2_NO_DP data are not biased in amino-acid composition and reflect
the SwissProt distribution (see Supplementary Fig. S10). It was then used to train
DynaMine (see Fig. 3) based on the linear regression algorithm in Weka 3.6.950

with default parameters. Different regression models were trained using varying
sequence window sizes w; for example, at w equal to 7 the S2RCI value of the central
amino acid and the amino-acid sequence starting at three amino acids before and
ending at three amino acids after the central residue are included as input to the
learning algorithm. To ensure that each sequence fragment of length w is included
only once in the model training, we constructed distributions for all the fragments
of length w in the training set and assigned an S2RCI value corresponding to the
median of the distribution after removal of the outliers (the points falling outside
the interquartile range). S2RCI value distributions with a relative s.e. 425% were
discarded. The trained DynaMine predictor then takes as input sequence fragments
of size w and provides a prediction for the central element of the fragment (the
target residue). We assessed DynaMine performance by a 10-fold cross-validation

for each w varying between 5 and 51. In this approach, the DSRCI-S2_NO_DP data set
was partitioned into 10 subsamples; each of these was used in turn for testing the
model trained on the remaining nine subsamples (Fig. 2a/b). We also trained a
model on the complete DSRCI-S2_NO_DP data set and tested it by predicting the S2pred
values for the DSRCI-S2_DP data set (Fig. 2c/d).

Predictions for N- and C-terminal regions. If we define the N- and C-terminal
residues as the first and last 25 residues in the sequence (based on the 51
residue window size of the predictor), the distribution in DSRCI-S2_NO_DP of S2RCI
values at the termini (Supplementary Fig. S11B) is skewed towards lower values
compared with the non-terminal regions (Supplementary Fig. S11A). The dis-
tribution of the S2pred values reflects this bias, although the N- and C-terminal S2pred
values rather overestimate the S2RCI values; very few S2pred values are o0.4
(Supplementary Fig. S12). The peak of most commonly observed values (around
0.9 for S2RCI) in contrast shifts to a lower value for S2pred (around 0.8). The Dyna-
Mine prediction is based on overall statistics and therefore results in narrower S2

distributions; the simple linear prediction model exemplifies the relevance of the
training data and directly reflects previous studies that identified the N- and
C-termini of proteins as more likely to be disordered and dynamic51,52, with
‘almost all proteins (97%) ha[ving] some disordered residues detected within
terminal regions’52.

Independent data set. The independent data set DSIND_DP contains DisProt
entries not in DSRCI-S2_DP that were annotated by X-ray crystallography, NMR,
hydrogen–deuterium exchange and mass spectrometry-based high-resolution
hydrogen–deuterium exchange or high relative B-factor. We combined these
mostly ‘disorder’ annotations with ‘order’ information from the PDB (Fig. 3); for
all sequences that have monomeric NMR structures consisting of an ensemble of
models, residues were given an ‘order’ annotation if it was found in helix or beta-
strand conformation (as determined by STRIDE53) in all of the models. All
residues without annotation were not used in the performance comparisons.

ROC curves. The DynaMine and S2RCI best performance point on the ROC curves
in Fig. 4a were selected as the closest points to the top left corner of the plot (the
ideal performance point: maximum true-positive rate (1) and minimum false-
positive rate (0)). The thresholds shown for the different disorder predictors are
those reported in the corresponding papers or web-server documentations.

Disorder predictors. Disorder predictions for ESpritz, IUPRED, PONDR VSL2
and RONN were obtained from the corresponding web servers. FoldIndex32

does not provide values for the first and the last 25 residues of the input sequence;
we used a modified version that provides these values, ensuring that the values
for the rest of the sequence are identical with those provided by the original
FoldIndex. PrDOS2 is the advanced version of the PrDOS disorder-prediction
method29 and takes the evolutionary conservation of the input sequence into
account. It is not yet publicly available and we obtained the prediction results
directly from the inventor of the method.

Relating disorder prediction to S2expvalues. We also addressed the relevance of
dynamics and disorder predictions in the context of S2exp values. The DSEXP-S2 set
contains 22 proteins for which experimental S2 order parameter values are avail-
able, excluding DSRCI-S2 sequences (Supplementary Table S5). We subtracted the
values produced by the disorder predictors from 1.0 to obtain values matching the
S2 scale (from 0 to 1), except for FoldIndex where values were used as they are.
Supplementary Figure S13A shows the linear correlation and RMSE between the
per-residue predictions and S2exp values. DynaMine and the Espritz X-ray and NMR
predictors give the best results. The reasonable agreement generated by the Espritz
predictors confirms previous findings about the capacity of disorder predictors to
relate to dynamics19. However, all entries in the DSEXP-S2 set have closely related
structural entries in the PDB. The Espritz approaches likely include information on
these structures, and o15% of the S2 values DSEXP-S2 contains are o0.8, mostly
indicating loops in globular structures. Although the data set does, therefore, not
represent intermediate dynamics and disorder well, it is still useful to compare the
predictors to the S2exp values using a two-state ‘rigid’/‘highly dynamic’ distinction
similar to order/disorder, as this is a relative comparison and allows a different
examination of their performances in relation to dynamics. Supplementary Figure
S13B shows the AUC of the ROC curve for the predictors using different S2exp
cutoffs to distinguish between ‘highly dynamic’ and ‘rigid’ residues. Higher values
indicate better predictions; the predictive capacity of all predictors strongly
decreases with increasing S2exp cutoff, except for Espritz_DisProt and FoldIndex.
The PrDOS2 predictor gives the best performance (although not in an absolute
sense, see Supplementary Fig. S13A); this demonstrates the close connection
between disorder and dynamics. The next best results come from DynaMine and
the Espritz X-ray and NMR predictors. The relation between the disorder values
produced by these best disorder predictors and the actual backbone dynamics of
protein residues is evident from this analysis; it solidifies the conclusion that
dynamics and disorder are closely connected.
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Influence of disordered fragment length on prediction accuracy. We first
compared the content of DSRCI-S2 to the DisProt database (release 6) in terms of
disordered fragment length. The lengths of the highly dynamic fragments in the
DSRCI-S2 data set (defined as continuous residues with values o0.795) tend to be
shorter than the length of disordered fragments annotated in DisProt
(Supplementary Fig. S14). We then investigated the influence of the disordered
fragment length on the prediction accuracy by subdividing the DSIND_DP into
subgroups of short (o20 amino acids), long (between 20 and 50 amino acids) and
extremely long (450 amino acids) fragments, and re-ran the ROC curve analysis
as described in Fig. 4b (Supplementary Fig. S15). The DynaMine prediction
accuracy for the long and extremely long fragments is comparable to the best
predictors, whereas on the short fragments it does better than most.

Comparing DynaMine predictions to hydrophobicity scales. To ensure that
DynaMine does not only reflect hydrophobicity, we performed an analysis of 22
hydrophobicity scales using a 15-residue window with no scaling for the sequences
in DSIND_DP. Some of the hydrophobicity-based predictors indeed perform excel-
lently with respect to disorder (Supplementary Fig. S16), although DynaMine
outperforms them. DynaMine is, however, a fast backbone dynamics predictor, and
we also compared the hydrophobicity predictions against the S2exp values. To
normalize the hydrophobicity values, we first applied a normalization function to
obtain hydrophobicity values ranging from the lowest and highest S2exp values and
reversed the hydrophobicity values in case of negative linear correlation so as to
obtain the lowest RMSE. The results of this analysis are shown in Supplementary
Fig. S17 (similar to Supplementary Fig. S13A), and they show that hydrophobicity
alone does not reflect the S2exp values at all. This demonstrates that the DynaMine
predictions go well beyond what traditional hydrophobicity scales can provide.

DynaMine availability. The DynaMine predictor model file to be used within the
Weka framework is available upon request from the authors. The Weka command
line can be used to get the DynaMine predictions in the following way:

java classpath weka.jar
weka.classifiers.functions.LinearRegression -T othe
input sequence in ARFF format4 -l othe DynaMine model
file4 -p 1-51

An example of input sequence (for p53) in the ARFF format (command line
option -T) compatible with the DynaMine predictor is provided as Supplementary
Data 1 (dataset.arff).

We also provide as Supplementary Software 1 a wrapper python script
(wrapper_predict.py) that can take a FASTA file as input, to be launched as follows.

python wrapper_predict.py myProtein.fasta
In the Supplementary Software 2 (config.py) the javacmd variable should be

modified to the system requirements. The wrapper_predict.py script produces the
input for the Weka framework and manages the Weka output through two python
scripts (Supplementary Software 3, produce_input.py and Supplementary Software
4, print_predictions.py) with
BioPython dependencies.
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