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Dual-topology insertion of a dual-topology
membrane protein

Nicholas B. Woodall!, Ying Yin' & James U. Bowie'

Some membrane transporters are dual-topology dimers in which the subunits have inverted
transmembrane topology. How a cell manages to generate equal populations of two opposite
topologies from the same polypeptide chain remains unclear. For the dual-topology
transporter EmrE, the evidence to date remains consistent with two extreme models. A
post-translational model posits that topology remains malleable after synthesis and becomes
fixed once the dimer forms. A second, co-translational model, posits that the protein inserts
in both topologies in equal proportions. Here we show that while there is at least some
limited topological malleability, the co-translational model likely dominates under normal
circumstances.
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dual-topology protein presents a difficult problem for
Aevolution to solve. How can the same polypeptide
achieve equal populations of the two topologies? If one
orientation is strongly preferred it will lead to many orphan
subunits that do not have an opposite topology partner.
A possible solution to this problem would be for topology to
remain malleable after synthesis so that the topology is set
only after an opposite topology partner is found, driven by the
stability of the antiparallel dimer!. We will refer to this as
post-translational dual-topology generation (Fig. 1a). A number
of studies have shown that membrane protein topology can be
altered after synthesis. In particular, the Skach lab showed
that aquaporin-1 can insert in a partially incorrect topology
and then re-orient after synthesis> and work from the Dowhan
group revealed that altering the lipid composition leads to a
remarkable topology rearrangement of an entire domain of
lactose permease®*.
The most well studied dual- topology transporter is the
multidrug resistance protein EmrE">®, In one subunit the
N and C termini are inside the cytoplasm (N;,/C;,) and in
the other subunit, the N and C termini are outside (Nou/Cour)”*S.
The topology of helical membrane proteins can be predlcted
by the preference for positively charged amino acids to reside
in the cytoplasm, the so-called positive-inside rule®!?. As a
dual-topology protein, EmrE does not exhibit a positive-inside
rule charge bias. By the strategic introduction of positive charges,
however, it is possible to force subunits into either the N;,/C;,
topology or the Ngu/Cou topology”. Subunits forced into the
N;,/Ci, topology will not form active dimers with themselves,
but will form active dimers with subunits forced into the
Nout/Cout topology.

Studying the dual-topology protein EmrE, the von Heijne
group showed that only subunits with Ng,/Coy topology
would complement an EmrE construct with C-terminal
positive charges!2. These results have been interpreted to imply
that topology can remain undefined until after the entire
protein is made, consistent with the post-translational model
(Fig. 1b)!12714, Yet these results can also be explained by a
co-translational model in which the protein inserts in both
topologies, but the C-terminal positive charges simply inactivate
subunits initially inserted in the N, topology (Fig. 1b).
Consequently, without any direct examination of the
inserted topologies, the indirect complementation experiments
do not demonstrate topological malleability and the mechanism
of dual-topology generation remains in question.

The problem with distinguishing between the post- and
co-translational topology models is that the final state is the
same: dual topology. What is needed is a way to lock the
N terminus in its initially inserted topology. As described below,
we find that placement of a short haemagglutinin (HA) epitope
tag at the N terminus of the protein (HA-EmrE, Fig. 2a) allows
the expression of both topologies of EmrE, but blocks subsequent
topology rearrangement, allowing us to examine the co- and
post-translational topology generation models. We find that
some post-translational topology changes can occur, but
that EmrE normally inserts in both Nj, and N, orientation
with similar frequencies so that post-translational corrections are
not a major mechanism for dual-topology insertion.

Results
HA tagging of EmrE does not prevent dual-topology insertion.
We first asked whether the HA tag altered the functional behaviour
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Figure 1 | Dual-topology insertion models. (a) Post-translational dual-topology model: EmrE inserts into the membrane in a preferred topology and then
changes topology to form the stable antiparallel dimer. Co-translational dual-topology model: EmrE obtains dual topology by inserting equally into both
topologies. Extra subunits are degraded. (b) Topology of EmrE with C-terminal positive charges if the N-terminal helix has a malleable or static

topology. Regardless of the mechanism, no active dimer can be formed with the N;,/C;, EmrE. The frustrated N,/C;, topology shown is one of the many

possible topologies.
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Figure 2 | Indirect topology assay of EmrE-C + and HA-EmrE-C +.

(a) Diagram of the EmrE constructs used. (b) The growth of 10-fold
dilutions of stationary phase cell culture expressing the HA-EmrE-C + or
EmrE-C + constructs with a single topology EmrE mutant (HA-EmrEjoced in
or HA-EmrEjocked out), Spotted on agar plates in the presence of

190 ug ml 1 ethidium bromide.

of the protein by attempting to recapitulate the prior in vivo results
from the von Heijne group which showed that C-terminal positive
charges would only generate active N;,/C;, subunits'2. As shown in
Supplementary Fig. 1a, HA-EmrE imparts resistance to ethidium
bromide suggesting that HA-EmrE is functional and can therefore
attain a dual topology. We then created a construct with a cluster
of positive charges (KKKHHHHHH) at the C terminus,
HA-EmrE-C+, to mirror the construct used previously'?
(Fig. 2a) and a control construct, EmrE-C+, without the HA
tag, leaving a wild-type N terminus. We then tested the ability of
these constructs to complement subunits forced into either the
Nin/Ci, topology (HA-EmrEjogeq in) Or the Nyu/Cour topology
(HA-EmrEjocked our) by strategic placement of positive charges as
described previously!!. EmrE-C + and HA-EmrE-C + effectively
complement the Ny /Coye subunit HA-EmrEjed ou but not
HA-EmrEjkeq in (Fig. 2b). Thus, EmrE-C+ and HA-EmrE-C +
produce active subunits, but only in the N;,/C;, topology,
consistent with prior experimentslz.

Rapid degradation of orphan EmrE subunits. We next sought
to move beyond genetic complementation to directly map the
topology of the constructs. We were initially stymied in these
efforts, however, because both HA-EmrE-C+ and EmrE-C+
had very low expression levels in the absence of the appropriate
Nout/Cout  partner subunit. We therefore considered the
possibility that orphan subunits might be rapidly proteolyzed.
Figure 3a shows the degradation of HA-EmrE-C + over time in
the presence of the incorrectly oriented subunit partner,
HA-EmrEj cied in» OF in the presence of the correctly oriented
subunit partner HA-EmrEokeq ourr When dimer formation is
precluded, the HA-EmrE-C+ is degraded rapidly (half-life
<30 min), while in the presence of the appropriate partner, there
is essentially no detectable degradation after 120 min. These
results suggest that the C-terminally charged constructs exist in
an unstable form that is subject to proteolysis.

Blocking FtsH-mediated proteolysis of orphan EmrE subunits.
FtsH is an integral membrane protease that is known to
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Figure 3 | FtsH-dependent proteolysis of EmrE. (a) The loss of HA-EmrE-
C+ co-expressed with either HA-EmrE oced in OF HA-EMIE ocked out after
protein synthesis has been stopped at time zero. HA-EmrE -C + was
visualized by western blotting for the penta-histidine epitope. (b) The
expression of HA-EmrE and HA-EmrE-C + in wild type and FtsH knockout
cells. The protein was visualized by western blotting using the HA epitope.

preferentially degrade unstable membrane proteins!®, so we

tested whether FtsH was involved in degrading HA-EmrE-C +.
Figure 3b compares the expression levels in a control strain
(AR3289) and an FtsH-null strain (AR3291)!6. Expression is
~ 80-fold higher in the FtsH-null strain than in the control strain,
indicating that FtsH is at least partially responsible for the
degradation of HA-EmrE-C+. The FtsH-null strain became an
important tool for mapping the topological variants of EmrE,
because it allowed us to map the topology of even unstable forms
that might otherwise be lost to degradation.

With the ability to prevent proteolysis, we sought to directly
determine the topology of EmrE-C+ constructs using cysteine
accessibility. Cysteine accessibility maps the topology of a
membrane protein by identifying whether a single introduced
cysteine resides in the cytoplasm or the periplasm, by measuring
the reactivity of the cysteine to a membrane-impermeable
reagent!”. The procedure is outlined in Supplementary Fig. 2.
We first add the membrane-impermeable reagent, 4-acetamido-4’-
maleimidylstilbene-2,2'-disulfonic acid (AMS), and later a
membrane-permeable biotinylation reagent, 3-(N-maleimido-
propionyl)-biocytin (MPB). If AMS has already reacted with the
lone cysteine (that is, cysteine has a periplasmic location) then
reaction of MPB will be blocked by AMS. Otherwise MPB will
modify the cysteine. The extent of MPB modification can be
detected by a gel shift in the presence of avidin (seen as a loss of the
gel band corresponding to free EmrE). To reliably assess the level
of biotinylation without AMS, we also perform a reaction with
MPB alone. To apply this method, we introduced unique cysteines
(3C, F27C, Q81C and T108C) into a cysless background (C39A/
C41A/C95A), denoted as EmrECesS, The EmrEC'®SS variants were
unreactive with MPB under our conditions and the intensity of
the bands on western blots were linearly related to the amount of
protein loaded (Supplementary Figs 3 and 4). We utilized the
FtsH-null strain in all cysteine-accessibility topology experiments
and three experimental replicates unless otherwise noted.

The t%Pology of EmrE-C + is Nj,/C;,. To assess the topology of
EmrE~®S-C+ with a wild-type N terminus, we mapped the
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Figure 4 | Direct-topology assay of EmrE-C + and HA-EmrE-C +. Proposed topologies are shown on the left and cysteine-reactivity data are shown on
the right. Added positively charged residues are shown in red. Invariant positively charged residues present in the wild-type protein are shown in light grey.
AMS response is the per cent change in biotinylation due to the reaction with AMS. (a) Results for the EmrEC!ess-C + constructs. The high AMS response
of F27C (n=4) is indicative of a periplasmic cysteine and the low AMS response of T108C(n = 4) is indicative of a cytoplasmic location. (b) Results for the
HA-EmrE-C + construct. While T108C (n = 3) shows a low AMS response similar to the EmrEC!esS-C + construct that does not possess and HA tag, F27C
(n=5) shows much lower AMS response than seen in the EmrECless-C 4+ construct. EmrEC'®SS-C + was visualized by western blotting for the penta-
histidine epitope and HA-EmrE-C 4+ was visualized by western blotting for the HA epitope.

locations of F27C in the first loop and T108C on the C terminus.
As expected for an N;,/C;, topology, F27C is periplasmic as
indicated by the large decrease in the avidin-dependent gel
shift on prior reaction with AMS (78 £13% change compared
with no AMS, error is standard deviation observed for n=4
replicates) (Fig. 4a). The C-terminally located T108C showed no
change in gel shift after reaction with AMS (10 14%,
n=4) indicating a cytoplasmic location, as is expected for
an N;,/C;, topology (Fig. 4a). These results indicate that the
C-terminal positive charges do define the topology of the N ter-
minus as suggested previously based on complementation
experiments!2.

Topology of HA-EmrE-C + . Continuing our characterization of
the HA-tagged protein, we examined the topology of
HA-EmrEY®-C + using the same F27C and T108C mutations.
A cysteine introduced into the first loop (F27C) of HA-
EmrE“®.C + showed only partial blocking (48 + 13%, n=>5) by
AMS (Fig. 4b). In contrast the C-terminal cysteine, T108C, which
is adjacent to the C-terminal positive charges showed no response
to AMS (1 4%, n = 3), which indicates that it resides completely
in the cytoplasm (Fig. 4b).

The partial reactivity of F27C in the HA construct led us to
consider the possibility that the N terminus normally inserts in
two different topologies, but that the HA tag blocks subsequent
topology rearrangement, leading to a mixed topology form as
illustrated in Fig. 1b. We first had to evaluate other possible
reasons for the partial reactivity, however.

Partial reactivity is not due to an environmental constraint. We
considered the possibility that F27C is actually located fully in the

4

periplasm in the HA-EmrE-C + construct, but is only partially
reactive to AMS because it is partially buried by protein or
membrane (even though this does not occur in the EmrE-C +
construct missing the HA tag). To test whether F27C in
HA-EmrEX$-C + would be fully blocked by AMS if the protein
were in a pure N;,/C;, topology, we expressed the single-cysteine
variants of HA-EmrE?®S-C + in a wild-type (FtsH ") strain in
the presence of HA-EmrEj,cked our- As illustrated above, when
expressed in an FtsH™ strain, the Nj,/Cy, topology remains
resistant to proteolysis when expressed in the presence of
HA-EmrEj eq_out because it can form stable dimers, but orphan,
unpaired subunits, are rapidly degraded by FtsH. Thus, only the
N;,/C;, topology of HA-EmrECesS_-C + will be present, allowing
us to test the cysteine’s reactivity in a pure N;,/C;, subunit in
the active dimer. As shown in Fig. 5a, when expressed with
EmrEjcked ouw F27C is fully blocked by AMS (85 +20%, n=3),
whereas T108C remained inaccessible to AMS (5% 6%, n=23).
Moreover, Q81C, in the third loop was fully blocked by AMS
(94+12%, n=3), consistent with the N;,/C;, topology when
expressed with HA-EmrEj eq our- These results suggest that
we could have seen complete blocking of the F27C position if
HA-EmrE“$-C + adopted a pure N;,/C;, topology.

It still remained possible that F27C in HA-EmrEC®S-C + is
more reactive to AMS in an active dimer compared with the
orphan form in the absence of an N, /C,, subunit partner. To
test this possibility, we attempted to generate pure normal N;,/C;,
and distorted N,/C;, topology orphan subunits by controlling the
topology of the N-terminal helix. To favour an N, orientation, we
introduced a positive charge bias into loop 1 using the mutations
G26R and T28R, to produce Nou-HA-EmrECess.C 4 (Fig. 5b). To
favour an Nj, orientation, we placed positive charges at the N
terminus by changing the N-terminal sequence from MPNYIY to
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Figure 5 | AMS reactivity tests for EmrE constructs. Proposed topologies are shown on the left and cysteine-reactivity data are shown on the right. Added
positively charged residues are shown in red. Invariant positively charged residues present in the wild-type protein are shown in light grey. AMS response is
the per cent change in biotinylation due to the reaction with AMS. (@) AMS response of different cysteines in the HA-EmrEC!ess-C + construct, when paired
with HA-EmrEjocked out t0 generate an antiparallel dimer. Unpaired HA-EmrECess-C 4+ subunits are rapidly degraded by FtsH. (b) Topology mapping for the
construct No-HA-EmrEC'esS-C + . The frustrated Noyy/Cin topology shown is one of the many possible topologies. (¢) Topology mapping for the construct
Nin-HA-EmrEC1esS-C ++ . EmrE is visualized by western blotting for the HA epitope and the results shown are representative of assays performed in triplicate.

MRRRYTY, generating N,,-HA-EmrECless.C + (Fig. 5¢). Because
of the introduced charge biases, the N-terminal helix in these
constructs should insert in unique orientations. Indeed for
Nou-HA-EmrEC®S.C + construct, F27C and T108C no longer
show any reaction to the AMS reagent (5+15% and 01 4%,
respectively, n=3) indicating that F27C and TI108C are
cytoplasmic (Fig. 5b). Conversely, for Ni,-HA-EmrEss.C 4,
the F27C position is nearly fully blocked by AMS (78 + 10%, n = 3)
and 3C is completely unblocked (6 £ 9%, n = 3), consistent with an
N, topology (Fig. 5¢). Q81C shows a less complete AMS response
(61 £ 7%, n=23), possibly due to an altered conformation in the
monomeric subunit. Nevertheless, these results strongly suggest
that the partial blockage observed for F27C in HA-EmrE“es-C +
is not due to the changes in reactivity of F27C.

We were unable to use c?lsteine accessibility to map the location
of 3C in the HA-EmrEC®S.C+ and N,,-HA-EmrECess.C +
constructs because of disulfide bond formation of 3C. As shown in
Fig. 6, a band at a dimer molecular weight is seen in constructs
where 3C is expected to reside in the periplasm, but not in
constructs where 3C is expected to reside in the cytoplasm. The
dimer band is eliminated after reduction by B-mercaptoethanol
(B-ME). Although disulfide formation complicates cysteine-
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Figure 6 | Disulfide formation at the N terminus. A 3C mutant in the
context of the HA-EmrEC!ess-C + and Ny -HA-EmrEC!ess-C + form dimers
that are sensitive to the addition of 2-mercaptoethanol suggest that the 3C
can form disulfide-linked dimers. No dimers were seen for the N;,-HA-
EmrECless-C 4 construct. These results are consistent with a 3C location in
the oxidizing periplasm for EmrEC'®S-C + and No,-HA-EmrECess-C +
constructs and a 3C location in the reducing cytoplasm for the N;,-HA-
EmrEC1ess-C 4+ construct. Further disulfide formation was blocked by the
addition of iodoacetamide prior to cell lysis. EmrE is visualized by western
blotting for the HA epitope.
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Figure 7 | Time dependence of AMS reactivity. The extent of AMS blocking of HA-EmrEC!ess-C + F27C and T108C for 10 and 20 min is shown. Essentially
no difference is observed, indicating that 10 min is sufficient to block all the available thiols in F27C and that the extent of reaction reflects an end point
rather than a slowed rate of modification. The experimental conditions are the same as described in Fig. 4. EmrE is visualized by western blotting for the HA

epitope.

accessibility analysis, formation of the disulfide bond is indicative
of an oxidizing, periplasmic location. In Nj,-HA-EmrECss-C 4,
the 3C cysteine has robust reactivity with MPB and does not form
disulfide bonds as would be expected for its cytoplasmic location
(Fig. 6). Thus, the observation of disulfide formation is consistent
with the predicted topologies.

Partial reactivity is not due to topology flipping. We finally
considered the possibility that the HA-tagged N terminus
topology is not fixed in an Nj, or N, topology, but flips back
and forth. If the N-terminal segment (including F27C) of
HA-EmrE-C+ can move from the cytoplasm to the
periplasm, then the partial reactivity could be due to its
presence in the periplasm for only a fraction of the time. If so, the
extent of F27C blocking should be time dependent. When we
increased the AMS reaction time with HA-EmrEC®S-C + F27C,
however, we saw no increase in AMS blocking. When blocked for
10 or 20 min we observed AMS blocking of 48 + 13% (n =3) and
49 +13% (n = 3), respectively (Fig. 7). These results are consistent
with a static topology of the inserted HA-EmrE-C +, that is, the
protein is either Nj,/C;, or Ny, /Ci, and does not flip after
insertion.

Discussion

Our results indicate that under normal circumstances EmrE
inserts in two opposite topologies at roughly equal frequencies.
In particular, with an HA tag at the N terminus that blocks
subsequent topology flipping, we observe insertion in both an
Ni, and an N, topology. As the initial insertion occurs in
both topologies with roughly equal proportions, it suggests
that the primary mechanism for EmrE dual-topology biogenesis
is co-translational (Fig. 1a). While we cannot rule out global
topology flipping in the wild-type protein as predicted by the
post-translational mechanism, we only have direct evidence for
more limited topology rearrangements when the protein is
unnaturally inserted in a distorted topology. Indeed, to our
knowledge our work is the first direct demonstration of
topological malleability in EmrE since a static topology would
produce the same results in the complementation assays used
previously!? (see Fig. 1b). Moreover, we find that incorrectly

6

inserted or unpaired subunits can be cleared rapidly by
proteolysis so a mechanism for ensuring equal populations of
both topologies by subsequent topology flipping is not necessary.
When topological signals are manipulated by the placement of
positive charges at the C terminus, causing initial insertion in a
distorted N,,/C;, topology, the topology can indeed rearrange to
an N;,/C;, topology as previously suggested by von Heijne and
co-workers!2, It is fascinating and remarkable that even partial
topological rearrangements are possible, although they are likely
driven by distorted topologies that may only rarely occur
naturally. Thus, we suggest that major topology rearrangements
are unlikely to play a major role in dual-topology generation with
the normal EmrE topology signals.

Methods
Materials. AMS was purchased from Life Technologies (Grand Island, NY). MPB
was purchased from Cayman Chemical (Ann Arbor, MI).

Plasmids and constructs. The EmrE constructs were cloned into the pBAD/His A
plasmid (Invitrogen) using the Ncol and Xhol cut sites, which removes the built-in
tags. For the co-expression experiments, the EmrEjocied_out and EmrEjoceq in con-
structs were cloned into another pBAD vector, which contains a chloramphenicol-
resistance gene and a ClodF13-derived CDF replicon. This vector was created from
the pSEL1 vector described previously'S. The CDF origin was removed from
pCDFDuet-1 vector (Novagen) using the Xbal and Nhel restriction sites and was
ligated into the pSEL1 vector replacing the p15A origin using the same restriction
sites. EmrE constructs were cloned into the vector using a Ncol and HindIII site. A
second Ncol site in the chloramphenicol-resistant gene was removed by making a
silent mutation of Thr172 from the ACC codon to the ACA codon using PCR
quickchange mutagenesis.

HA-EmrE bears an N-terminal HA epitope (YPYDVPDYA) before the wild-
type Escherichia coli (E. coli) EmrE sequence with an additional glycine
downstream of the initial methionine. The amino acids KKKHHHHHH were
added onto the C terminus for the constructs HA-EmrE-C + after a linker
(ENLYFQG). The EmrE-C + construct has the same protein sequence as
HA-EmrE-C + except with a wild-type N terminus. A more detailed view of these
constructs is given in Supplementary Fig. 5.

Surprisingly, HA-EmrE can be induced at full induction in the pBAD system
without the cellular toxicity normally associated with the overexpression of
EmrE!!. Expression of the EmrE-C+ construct lacking the HA tag was toxic in
our pBAD system. We speculate that the reduced toxicity of HA-EmrE may be due
to a predicted RNA hairpin accidentally included in the HA tag that reduces
expression (Supplementary Fig. 5). To use EmrE-C+ in our system, we therefore
engineered a predicted RNA hairpin into EmrE-C + by altering the DNA but not
the protein sequence. The DNA mutations A-7T (in the pBad His A plasmid) and
C6T prevent the toxic overexpression of EmrE-C + in our pBAD system
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(Supplementary Fig. 5C,D). The N-terminal portion of the wild-type-EmrE
construct contains the same DNA sequence as EmrE-C +.

All of the point mutations were introduced by quickchange PCR mutagenesis.
The HA-EmrEjgeeq oue cOnstruct based on a previous work!! contains the
N-terminal HA tag of HA-EmrE to prevent toxicity and the mutations T28R, L85R
and R106A. The HA-EmrEj,cieq in construct has the same HA tag to prevent
toxicity and was also based on previous work!! but contains an additional mutation
(M1K) to ensure complete topological locking in our system (M1K, R29G, R82S
and S107K)'!.

In all constructs used with cgsteine—accessibility experiment (N;,-HA-
EmrECesS.C 4, Ny -HA-EmrECes.C 4, HA-EmrEC®sS-C + and
EmrECIess-C + ), the native cysteine residues were changed to alanine (C39A, C41A
and C95A). The added cysteines F27C, Q81C and T108C were then singly
introduced into each of the cysteine null constructs. The mutation 3C adds the
amino acids ‘CG’ after the initial two N-terminal residues, MG, which are upstream
of the HA epitope. To form the Nin-HA-EmrECS-C + construct, the HA-
EmrEC®S-C + construct had the mutations N2R, P3R and additional arginine
inserted between the two residues. To form the N -HA-EmrECS-C + construct,
the HA-EmrEC'®S-C 4 construct had the mutations G26R and T28R incorporated
into sequence.

Ethidium bromide-resistance assay. E. coli BL21Pro (Addgene/ClonTech) cells
with the relevant plasmids were grown to saturation (~10h at 37°C) and

then serially diluted 10-fold six times. Five microlitres of each dilution was spotted
onto plates with 0.2% arabinose, 34 pgml ~! chloramphenicol, 100 pgml !
ampicillin, and the indicated concentration of EtBr. The plated cells were grown
at 37°C for 18 h.

Cysteine-accessibility topology assay. AR3291 (FtsH null) cells!® containing the
desired EmrE construct were grown to ~0.8 ODggo and then induced with 0.2%
arabinose at 30 °C for 2 h. Cells from 50 ml of cell culture were collected by
centrifugation and suspended in 500 pl of 50 mM phosphate buffer with 17 mM
NaCl at pH 8.0. Two-hundred microlitres of resuspended cells were incubated in a
final concentration of 2mM AMS for 10 min, rotating in the dark at room
temperature. The cells were then washed twice with 50 mM Tris-Cl at pH 7.5.
The final cell pellet was resuspended to a final volume of ~200 pl. Samples not
reacted with AMS underwent the same procedure without the AMS reagent. The
cells were further incubated with 4 mM MPB in 4% dimethylsulphoxide, 0.5%
toluene and 50 mM Tris-Cl at pH 7.5 for 1h while rotating in the dark at room
temperature. The cells were then lysed by sonication. Cell debris was removed by
centrifugation at 16,000¢ for 10 min and then membranes were isolated by
ultracentrifugation of the supernatant in a Beckman Coulter Airfuge at 160,000g
for 1h at room temperature. Membranes were resuspended in 20 mM Tris-Cl at
pH 7.5. Total protein was determined by the DC Protein Assay (Bio-Rad). For each
lane, 24 pg of protein was mixed with 4 x SDS loading buffer. Either 25 ug of
avidin (Sigma BioUltra) in 20 mM Tris-Cl at pH 7.5 or 20 mM Tris-Cl at pH 7.5
was added to the samples and the samples were run on a 12% NuPAGE Bis-Tris
(Life Technologies) gel using MES running buffer. The Accuruler Prestained
Protein Ladder was used to estimate molecular weight. Electrophoresis was carried
out at 40 V for 25 min and then 100V for 135 min. The samples were then
transferred to a (0.2 um) PVDF membrane at 95mA for 1 h using Towbin transfer
buffer with 20% methanol.

For the HA antibody, the membrane was blocked with 5% non-fat milk in
TBS-T (20mM Tris-Cl at pH 7.5, 150 mM NaCl, 0.1% Tween 20) followed by an
hour incubation in a 1:1,000 dilution of 1 mgml ~! monoclonal HA antibody (Sigma
#H3663) in TBS-T with 0.5% non-fat milk. The blot was then washed four times in
20 mM Tris-Cl at pH 7.5, 500 mM NaCl, 0.2% Triton X-100 and 0.05% Tween 20
buffer (TBS-Tween/Triton). The blot was incubated for 1h in a 1:3,000 dilution of
anti-mouse IgG peroxidase conjugate (Sigma #A4416) in TBS-T with 0.5% non-fat
milk and then washed six times for 10 min in TBS-Tween/Triton buffer. Western
blots for the histidine tag were performed as described above except that the
membrane was blocked and blotted with the supplied blocking buffer and the
pentahis horseradish peroxidase conjugate antibody (Qiagen #34460) as described in
the QIAexpress detection and assay handbook (1:1,000 dilution).

The blots were visualized on a FluorChem FC2 (Alpha Innotech) CCD imager
using the Amersham ECL Prime detection reagent (GE Healthcare) according to
the recommended protocol. The intensity of the bands was quantified using
Image]. A general background subtraction obtained from a dark area of the blot
was applied to each band. The amount of biotinylation was determined by the
decrease in band intensity between the lanes with and without avidin. The per cent
change in biotinylation between the reaction with MPB only and the reaction with
both AMS and MPB (labelled AMS response) was used to determine the location of
each cysteine. An uncropped blot image is shown in Supplementary Fig. 6.

CCL EmrE degradation assay. BL21Pro E. coli cells co-expressing HA-
EmrECSC + with either N, -HA-EmrEC®S.-C + or N;,-HA-EmrECIess.C +
were grown to ~ 0.8 ODggo and induced with 0.2% arabinose for 1h at 30 °C. The
cells were washed twice with LB media and then switched into LB media containing
350 pgml! erythromycin and 0.2% glucose to stop further protein synthesis.

Samples were taken at time zero (after the media switch) and at the other indicated
time points.

FtsH-null expression test. AR3291 cells (FtsH null) or AR3289 (control cells)
obtained from the Ogura Lab!® were grown to ~ 0.8 ODggo and then induced with
0.2% arabinose for 2 h at 30 °C. The cells were collected by centrifugation and lysed
by sonication. The membranes were isolated and the samples were visualized by
western blot for the HA epitope as described previously.

Disulfide bond determination. AR3291 (FtsH null) cells containing the desired
EmrE construct were grown to ~ 0.8 ODggo and then induced with 0.2% arabinose
at 30 °C for 2h. Cells from 50 ml of cell culture were collected by centrifugation
and suspended in 500 pl of 50 mM Tris-Cl buffer at pH 7.5. Two-hundred
microlitres of resuspended cells were incubated in a final concentration of 5mM
ioacetamide for 15 min, rotating in the dark at room temperature. The cells

were then washed twice with 50 mM Tris-Cl at pH 7.5 and lysed by sonication.
Cell debris was removed by centrifugation at 16,000g for 10 min and then
membranes isolated by ultracentrifugation of the supernatant in a Beckman
Coulter Airfuge at 160,000g for 1h at room temperature. Isolated membranes were
resuspended in 20 mM Tris-Cl at pH 7.5. Twenty-four micrograms of the samples
were then mixed in SDS loading buffer with 2-mercaptoethanol (B-ME) at 170 mM
and without. The protein was visualized by western blot using the HA epitope as
described earlier.
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