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Abstract

At present, al methods in Evolutionary Computation are bioinspired in the
fundamental principles of neo-Darwinism as well as on a vertical gene transfer. Thus, on
a mechanism in which an organism receives genetic material from its ancestor.
Horizontal, lateral or cross-population gene transfer is any process in which an organism
transfers a genetic segment to another one that is not its offspring. Virus transduction is
one of the key mechanisms of horizontal gene propagation in microorganism (e.g.
bacteria). In the present paper, we model and simulate a transduction operator, exploring
a possible role and usefulness of transduction in a genetic algorithm. The genetic
algorithm including transduction has been named PETRI (abbreviation of Promoting
Evolution Through Reiterated Infection). The efficiency and performance of this
algorithm was evaluated using a benchmark function and the 0/1 knapsack problem. The
utility wasillustrated designing an AM radio receiver, optimizing the main features of the
electronic components of the AM radio circuit as well asthose of the radio enclosure. Our
results shown how PETRI approaches to higher fitness values as transduction probability
comes near to 100%. The conclusion is that transduction improves the performance of a
genetic algorithm, assuming a population divided among several sub-populations or

‘bacteria colonies'.
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1. Introduction

At present, al methods in Evolutionary Computation (genetic algorithms,
evolutive algorithms, genetic programming, etc.) are bioinspired in the fundamental
principles of neo-Darwinism (Lahoz-Beltra, 2008) as well as on a vertical gene transfer.
That is, on a mechanism in which an organism receives genetic material from its ancestor
from which it evolved. In fact, most thinking in Evolutionary Computation is focused on

vertical gene transfer aswell asin crossover and/or mutation operations.

Microorganisms have been evolving on Earth for billions of years. Nowadays, there are
several reasons for which microbial evolution experiments have received increasing
attention (Elena and Lenski, 2003). Such experiments include many bacteria and viruses
as well as unicellular fungi. Microbiologists known from many years ago how bacteria
are able to adapt and evolve in al kinds of environments. Bacteria are microscopic
organisms whose single cells reproduce by a process of binary fisson or asexua
reproduction bearing a resemblance with John von Neumann's universal constructor
(1966). Thus, a bacterium is a self-replicating machine which chromosome is replicated
and a copy is allocated to each of the bacterium daughter cells. Both daughter cells are
identical excepting for those mutations occuring in daughter cells. A bacterial population
(or colony) evolve according to an evolutive algorithm similar to Dawkin’s biomorphs
(Dawkins, 1986), powering their evolution the cumulative selection of mutations. For a
long time, bacteria were thought to lack sexual reproduction and in conseguence away to
transfer genetic material between cells. However, bacteria as single-cell organisms
exhibit significant phenomena of genetic transfer and crossover between cells. This kind
of mechanisms belong to a particular kind of genetic transfer known as horizontal gene
transfer. Horizontal, lateral or cross-population gene transfer is any process in which an
organism, i.e. adonor bacterium, transfers a genetic segment to another one, a recipient

bacterium, which is not its offspring. In the biological realm, whereas the scope of
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vertical gene transfer is the population, in horizontal gene transfer the scope is the
biosphere. This particular mode of parasexuality between ‘relative bacteria includes
three genetic mechanisms. conjugation, transduction and transformation. In a previous
paper (Perales-Gravan and Lahoz-Beltra, 2008) we introduced an evolutionary algorithm
through the substitution of crossover operation in a genetic algorithm by conjugation.
Furthermore, microorganisms are very interesting individuals because they aso exhibit
‘socia interactions’. Recently we found (Lahoz-Beltra et al., 2009) how the inclusion of
the ‘socia life of microorganisms into the genetic algorithm cycle, significantly

improves the algorithm’s performance.

In Nature, microorganisms such as bacteria and viruses share a long and common
evolutive relationship. This relationship is mainly promoted by bacteriophages (or
phages) (Davis et a., 1990), thus a kind of viruses that multiply themselves inside
bacteria by making use of the bacteria biosynthetic machinery. Some bacteriophages are
able to move bacterial DNA (the ‘bacterial chromosome’) from one bacterium to another.
This process is known as transduction. When bacteriophages infect a bacteria cell, their
normal mode of reproduction uses the replication machinery of the bacterium, making
numerous copies of its own viral genetic material (i.e. DNA or RNA). Soon the nucleic
acid copies (or chromosome segments) are then packaged into newly synthesized copies
of bacteriophage virions. Considering the life cycle of a particular bacteriophage, we can
define two sorts of transduction (Figure 1). Generalized transduction occurs when ‘any
part’ of the bacteria chromosome (instead of viral DNA) hitchhikesinto thevirus (i.e. T4
phages in Escherichia coli bacterium). However, when only ‘specific genes or certain
specia ‘segments’ of the bacterial chromosome can be transduced, such mistake is named
as specialized transduction (i.e.  phages in Escherichia coli bacterium). Here we study
the possibility of developing genetic algorithms including transduction operations as
horizontal gene transfer mechanism. The efficiency and performance of transduction was

evaluated using a benchmark function and the 0/1 knapsack problem. The utility was
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illustrated designing an AM radio receiver, optimizing the main features of the electronic
components of the AM radio circuit as well as those of the radio enclosure. Our results
show how transduction improves the performance of a genetic agorithm, assuming a

population divided among several sub-populations or ‘bacterial colonies'.

It is important to point out that even when transduction in real bacteria involves
migration at ‘cellular level’ and subsequent crossover, it is not the simple addition of both
mechanisms. That is, Figure 2 depicts transduction operations as they are simulated in the
present paper. To show differences between transduction (Figure 2a-b) and migration-
crossover, Figure 2c illustrates how migration and crossover events must occur in
bacterial cells. In consequence, in transduction the transference of chromosome segments
(Figure 2a) between bacterial populations or colonies is very different of migration (the
occasional exchange of individuas). Migration and transduction could bear a
resemblance, but only when transduction involves the complete chromosome transference
(Figure 2b) between bacterial populations. Furthermore, this kind of transference is a
highly unlikely event in bacteria, taking place in these microorganisms the transduction of

chromosome segments as is shown in Figure 2a.

In this paper, we moddl and simulate the two kind of transduction operations described
above (Figure 2a-b), examining a possible role and usefulness of this genetic mechanism
in genetic algorithms. In a previous paper (Perales-Gravan and Lahoz-Beltra, 2008) we
introduced a bacterial conjugation operator (Figure 3), showing its utility designing an
AM radio receiver (Figure 4). Conjugation is one of the key genetic mechanisms of
horizontal gene transfer between bacteria. Now, in the present paper we refer to a genetic
algorithm including transduction as PETRI (abbreviation of Promoting Evolution
Through Reiterated Infection). We have investigated the transfer of genes and
chromosomes among sub-popul ations with a simulated ‘ bacteriophage’. In the model we

consider a structured population divided among severa sub-populations or ‘bacteria
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colonies', bearing a resemblance with coarse grained distributed genetic algorithms. Each
sub-population is represented as a Petri dish (a glass or plastic cylindrical dish used to
culture microorganisms). However, note that even when we divide a population into sub-
populations the proposed algorithm is sequential. Thus, the algorithm is not a distributed
one since we used a mono-processor computer and the agorithm has not been
parallelized. Moreover, the migration mechanism is synchronous since genes and
chromosome transferences were both between sub-populations and during the same
generation. Therefore, our approach could be related with those models of Cellular
Genetic Algorithms (cGA) (Alba and Dorronsoro, 2008) adopted also for mono-processor
machines, with no relation to paralelisn at all. Nevertheless, the cGA concept of
neighborhood is replaced by the notion of sub-population or ‘bacterial colony’ and the
migration of solutionsis substituted in our approach by the mechanism of transduction. In
our model we assumed that bacteria are able to display crossover through conjugation
instead performing one-point or two-points recombination. Moreover, we assume that no

vertical gene transfer mechanism is present in bacterial populations.

With the purpose to study the performance of the transduction operator, we used different
optimization problems. Experiments carried out in presence of transduction were
compared with control experiments, thus experiments performed in absence of
transduction. Similarly, we compared the transduction performance under the three types
of crossover: conjugation, one-point or two-points recombination. We are interested in
the study of genetic agorithms based on horizontal gene transfer mechanisms, mainly
conjugation and transduction operations. It is important to note that even when
conjugation and transduction are both horizontal gene transfer mechanisms, there are
some relevant differences between both. In first place, whereas conjugation involves two
bacteria from the same population, the bacteria involved in transduction could belong to
different populations. In consequence, conjugation is a genetic mechanism of horizontal

gene transfer within a population, whereas transduction is a genetic mechanism of
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horizontal gene transfer between populations (Figure 5). Secondly, in conjugation the
length of the transferred genetic segment is variable, whereas in transduction the
transferred segment length is always constant. In Section 2 of this paper, we present the
model description and PETRI agorithm, and in Section 3 we describe several smulation
experiments. Section 4 introduces the statistical analysis, and Section 5 presents the
whole results of the computer simulation experiments. Finally, Section 6 discusses the

possible impact of thiswork, suggesting future directions of advancement.

2. Modd description

In this section, we introduce the transduction model as well as the PETRI
implementation, thus the algorithm that results once transduction is included into a

genetic agorithm.

2.1. Transduction model

Let b be a chromosome (i.e. bacterium; 1,.., j ,..., N) and p a sub-population (i.e.
Petri dish; 1 ,..., 1 ,..., P) then a transduction operation (Figure 2) is defined as follows.
Transduction is the transfer of genetic material from a Petri dish and bacterium donors
(pP, bP) to a Petri dish and bacterium recipients (p?, bR). When the transference involves a
chromosome segment (Figure 2a) the result is a recombinant chromosomein the recipient
Petri dish pR. However, the transference of a complete chromosome (Figure 2b) resultsin
the substitution of one chromosome of the recipient Petri dish pR by the transferred one. It
is important to note that ‘bacterium’ and ‘Petri dish’ terms are used aong the paper as

‘chromosome’ and ‘ sub-population’ synonyms, respectively.



Nature Precedings : doi:10.1038/npre.2009.3732.1 : Posted 8 Sep 2009

The donors, Petri dish and bacterium, are both selected applying one of the
following criteria. Let p° be the donor Petri dish representing the sub-population from
which to select the donor bacterium. The selection of the donor Petri dish is based on one

of thefollowing criteria:

a) Random selection (method r).- In this case a Petri dish pP is chosen at random

from a uniform distribution according with the range [1, P].

b) Maximum fitness (method max).- Given P Petri dishes, the Petri dish p® with

maximum fitness is selected. Thus, if f, isthe fitness value of the ith donor Petri

dish, then we sdlect ("5 T, 1o T}

c) Average fitness (method ave).- Given P Petri dishes, the most representative

min

Petri dish p® with fitness value T, isselected, such that .

?i_f_p‘zo where f,

isthe average fitness of the P donor dishes.

d) Roulette whed dish selection (method roul).- In this case a Petri dish p° is

chosen spinning a roulette whedl that assigns to each dish a slot whose arc sizeis

proportiond to itsfitness val uef_i :

Once a donor Petri dish is sdlected, the choice of the donor bacterium bP is conducted

according to one of the following criteria:

a) Random selection (method r).- In this case a bacterium b° is chosen at random

from a uniform distribution according with the range[1, N].
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b) Maximum fitness (method max).- Given N bacteria, the bacterium b® with
maximum fitnessis selected. That is, suchthat 1 n{ 1. f2 - fjf where f, isthe

fitness value of the jth donor bacterium.

c) Average fithess (method ave).- Given N bacteria, the most representative

bacterium b° with fithess value f; is selected, such that f:‘fj —f_‘ZO where

f isthe averagefitness of the bacterial population or donor Petri dish pP°.

d) Roulette whedl bacteria selection (method roul).- In this case a bacterium bP is

chosen spinning a roulette wheel that assigns to each dish a slot whose arc sizeis
proportiona to its fitness value f;. Note that this method is the well-known

roulette wheel parents selection.

The recipient Petri dish and bacterium are both selected as follows. The selection

of therecipient Petri dish pRis conducted through one of the following criteria

a) Random selection (method r).- In this case a Petri dish pR is chosen at random

from a uniform distribution according with the range[1, P].

b) Minimum fitness (method min).- Given P Petri dishes, the Petri dish p? with

min

minimum fitness is selected. That is, "5 fi» o1 ] where T, is the fitness

value of the ith recipient bacterium.

c) Average fitness (method ave).- Given P Petri dishes, the most representative

" ?i_f_p‘zo where f, is

Petri dish pR with fitnessvalue f, is selected. Thus, ;™

the average fitness of the P recipient dishes.
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d) Inverse roul ette whed dish selection (method inv roul).- In this case a Petri dish

pR is chosen spinning a roulette wheel that assigns to each dish a slot whose arc

sizeis proportional to the inverse of its fithess value, thus }/f .

Once a recipient Petri dish is chosen, the selection of the receptor bacterium bR is

conducted according to one of the following criteria:

a) Random selection (method r).- In this case a bacterium bR is chosen at random

from a uniform distribution according with the range [1, N].

b) Minimum fitness (method min).- Given N bacteria, the bacterium bR with

min

minimum fitness is selected. That is, 1,__,N{ f,fy . f;} where f; isthe fitness

value of the jth recipient bacterium.

c) Average fitness (method ave).- Given N bacteria, the most representative

min

bacterium bR with fitness value f; is sdlected, such that 1__N‘ J- —f_‘ZO where

f isthe average fitness of the bacterial population or recipient Petri dish pr.

d) Inverse roulette wheel bacterial selection (method inv roul).- In this case a

bacterium bR is chosen spinning a roulette wheel that assigns to each dish a slot

whose arc sizeis proportional to the inverse of its fithess value, thus }/fj :

2.2. PETRI: A genetic algorithm with smulated transduction.

10
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The current PETRI (abbreviation of Promoting Evolution Through Reiterated
Infection) algorithm (Figure 6) uses a population size of N, performing re replicates, with
P being the total number of Petri dishes or sub-populations. Thus, we performed a
number of r..P trials of each simulation experiment. The algorithm cycles through epochs
(Figure 7) searching for an optimum solution until a maximum of G generations is
reached. Once (pP, bP) and (pR, bR) are selected, only one ‘ bacteriophage’ is assumed to
participate during each transduction event. The PETRI algorithm is summarized in the

following pseudocode description:

/* PETRI: Genetic Algorithmw th Transduction */
1. t:=0;

2. Initialization: Generate P Petri dishes (or sub-populations)
with N random bacteria (or chronosones).
3. WH LE not stop condition DO
/* Cenetic Algorithm?*/
(3.1) FOR each P Petri dish DO
Eval uati on of chronosones
Sel ection
Crossover (conjugation, one-point, two-points)
Mut ati on
(3.2) END FOR
/* End of Genetic Algorithm*/

4. Transduction: (p°% bd (pR bR

5. t:=t+1;
6. END WHI LE;
/* End of PETRI */

Starting with a random population of chromosomes (or bacteria) selection,
crossover, mutation, and transduction were ssmulated, obtaining new generations of equal
population size. Once the initial population of chromosomes was obtained at random, the

order in which the genetic operators were applied was in agreement with the protocol

11
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SDS (Lahoz-Beltra, 2001; Perales-Gravan and Lahoz-Beltra, 2004). This protocol is
inspired in DNA shuffling, an experimental method used in biotechnology for improving
in vitro protein activity and functionality. In the present smulation experiments, the
protocol SDS (Figure 8) involves a cycle of crossover and mutation, as well as
transduction, through ny generations. This phase is followed by repeated cycles of
crossover and transduction, one per generation, in absence of mutation. Considering the
performance of experiments previously conducted the simulation experiments were

carried out setting up ny equal to 25.

2.2.1. Selection

At each generation, the fitness of each chromosome was evaluated using a fitness
function that depends on the chosen optimization problem. Once the chromosomes are
evaluated, we selected the crossover (or mating) pool of the next generation using the
roulette wheel parents selection algorithm (Goldberg, 1989; Lahoz-Beltra, 2004). Of
course, other selection schemes are possible such as tournament selection, truncation
selection, aswell aslinear and exponential ranking selection. However, the roul ette wheel
parents selection scheme bears a better resemblance to Darwinian natural selection

(Lahoz-Beltra, 2001).

2.2.2. Crossover

Once a new generation of offspring chromosomes is obtained, then pairs of
chromosomes are randomly selected within a sub-population or Petri dish. Once a couple
of chromosomes (or bacteria) {#i, #} is selected, whether or not we are going to perform
crossover on the current pair of chromosomes {#, #} is decided on the basis of a
Bernoulli trial regarding conjugation as having a given probability p. (or alternatively

instead conjugation, crossover is conducted via one-point or two-points recombination).

12
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2.2.3. Mutation

Mutation of a gene was simulated changing at random the value gene, choosing
the mutated value from a uniform distribution with similar range of those defined to
obtain the initial population of chromosomes. Once again, whether or not to change a
gene value on a chromosome is decided on the basis of a Bernoulli trial, mutation being a

success with agiven probability p. (mutation probability).

2.2.4. Transduction

Transduction was simulated based on the model described in Section 2.1. The
operator requires the selection of the Petri dish and bacterium donors (pP, bP) as well as
the Petri dish and bacterium recipients (p?, bR). Once (pP°, b°) and (p?, bR) are both
selected, whether or not we are going to perform transduction on the current pair is
decided on the basis of a Bernoulli trial regarding transduction as having a given

probability p: (transduction probability).

3. Simulation experiments

The performance of the simulated transduction was studied considering three
optimization problems. The first problem uses a benchmark function and the second one
isthe 0/1 knapsack problem. Finally, weillustrated the usefulness of the transductionin a

real-life application problem described in Perales-Gravan and L ahoz-Beltra (2008).

3.1. Experiment 1

13
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A first optimization problem was an instance of the Michaewicz function. We

used 10 variables or genes, such that:

00 2= Tl X2
(x) -—i:199n(>§) gseng - Z?} : X D)

The simulation experiments were carried out with N = 500 chromosomes (or bacteria), re
= 15 and P = 4 Petri dishes. Therefore, we performed 60 trials (15 replicates x 4 Petri
dishes) of each experiment. The transduction experiments were conducted transferring
only complete chromosomes, cycling the algorithm through epochs searching for an
optimum until a maximum of 700 generations (G) is reached. In each trial, we calculated
the population average fitness at the last generation. The crossover and mutation
probabilities were set up to p.=0.75 and pn=0.05, respectively. When crossover was

simulated through conjugation then the conjugation parameter was set up asa =0.5.

Since preliminary results (experiment 3) suggested which one is the best transduction
policy, transduction was simulated selecting donors (pP, bP) based on max-max criterion,
and recipients (p?, bR) using roul-r criterion. The simulation experiments were conducted
setting up the transduction probabilities pi to 0% (control experiment, without
transduction), 25%, 50%, 75% and 100%. We performed simulation experiments with

PETRI using conjugation, one-point recombination and two-points recombination.

3.2. Experiment 2

A second optimization problem was the well-known 0/1 knapsack problem.
Assume we have | kinds of items and each item has a value v; and weight w;, being the

maximum weight that we can carry in the knapsack equal to W. The 0/1 knapsack

14
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problem restricts the number of each kind of item X to 0 or 1. The aim is to maximize

ZVi Xi subjected to ZWJ X =W The fitness was calculated by the usual expression:

?2wx W,?vx
j j
FO) = @
? wx >W,W-7? wx
j j

using the benchmark knapsack instance ‘knapl00' published on a web site by the Swiss
Federal Institute of Technology Zurich (2008). The instance includes the values and
weights of 100 items being maximum weight W=2732. The simulation experiments were
carried out with N = 200 chromosomes (or bacteria), re = 15 and P = 4 Petri dishes,
conducting 60 trials (15 replicates x 4 Petri dishes) of each experiment. The transduction
experiments transferred only complete chromosomes, cycling the algorithm through
epochs until a maximum of 1000 generations (G) isreached. In each trial, we obtained the
maximum fitness at the last generation. The crossover and mutation probabilities were set
up to p=0.75 and p.=0.05, respectively. When crossover was simulated through
conjugation then the conjugation parameter was set up as a =0.5. Once again,
transduction was simulated selecting donors (p°, bP) based on max-max criterion and
recipients (pR, b?) using roul-r criterion. The transduction probability p: was set up to 0%
(control experiment, without transduction), 25%, 50%, 75% and 100%. We performed
simulation experiments with PETRI using conjugation, one-point recombination and two-

points recombi nation.
3.3. Experiment 3

An example of the usefulness of transduction in a real-life application problem

consists in finding the main features of the electronic components of an AM radio

15
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receiver as well as those of the radio enclosure. The current PETRI algorithm uses a
population size of 500 (N) and 9 (P) Petri dishes, performing fifty replicates (re).
Therefore, we performed 450 trials (50 replicates x 9 Petri dishes) of each experiment.
The agorithm cycles through epochs searching for an optimum AM radio receiver until a
maximum of 200 generations (G) is reached. In each trial, we calculated the population
average fitness at the last generation. The crossover and mutation probabilities were set to
p.=0.75 and p.=0.05, respectively. Since crossover was simulated via conjugation, the
parameter @ was set to 0.5. The initial population of chromosomes (Figure 3) was
obtained at random, choosing the gene vaues from a uniform distribution according with
the ranges described in Perales-Gravan and Lahoz-Beltra (2008). At each generation, the
fitness of each chromosome, thus the degree of achievement of the AM radio receiver
circuit as well as the main features of the radio enclosure, was evaluated using the
following fitness function:
f = oo €7 + Fragoendonre 3

where fosiiaor 1S the fitness of the oscillator circuit and fiagio enciesure the fitness of the radio
enclosure designed to house the radio circuit. In function (3) Pp as well as Prc are two
punishment terms related with diode and RC filter performance, respectively.
Considering the intricacy of f, we suggest that for a detailed explanation see Perales-
Gravan and Lahoz-Beltra (2008).

3.3.1. Transduction policy

Based on the present optimization problem two types of transduction experiments
were conducted depending on that is transferred: chromosome segments (Figure 2a), or a

complete chromosome (Figure 2b).

16
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In those experiments with chromosome segments, we studied which one of the criteria
described in Section 2.1 leads to a superior conjugation performance. We assume that
conjugation results obtained with the AM radio receiver problem could be extended to
one-point or two-points recombination crossovers as well as to other optimization
problems. In order to simplify the number of possible simulation experiments we
assumed that most of the experiments are conducted considering the following restriction:
the Petri dish and bacterium donors were both selected applying the same method. Thus,
the Petri dish and bacterium donors were both obtained applying random selection,
maximum fitness, average fitness and roulette wheel selection. The aforementioned
criteria were labeled as r-r, max-max, ave-ave and roul-roul, respectively. Similarly, we
considered that the Petri dish and bacterium recipients were both selected also applying
similar methods, thus: random selection, minimum fitness, average fitness and the inverse
roulette whedl selection. The methods mentioned previously were labeled as r-r, min-min,
ave-ave and inv roul-inv roul, respectively. We aso considered for a few cases the
possibility that a Petri dish and bacterium were both selected applying different methods.
Once the donors (p°, bP) and recipients (p?, bR) were selected then the chromosome
segment to be transduced was chosen at random applying the following method. The
genetic segment transferred from b° to bR via a simulated bacteriophage (Figure 9) was

chosen with arandom value s from a uniform distribution with range [0, 2], such that:

0, 'Oscillator’
s= 1,'Diode+ RCFilter'  (4)
2, '"Enclosure

Note how in this smulation experiment we simulate ‘specialized transduction’,
transferring ‘complete blocks' or chromosome segments. The following transduction

simulation experiments were conducted:

17
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b)

d)

f)

Donor Petri dish and bacterium (pP, b®) are both selected based on max-max
criterion. The recipients (p?, bR) are selected as follows: roul-roul, roul-r, roul-
min, roul-ave, roul-max, roul-inv roul, max-roul, max-r, max-min, max-ave, max-

max and max-inv roul.

Donor Petri dish and bacterium (pP, b®) are both selected based on roul-roul
criterion. The recipients (pR, b¥) are selected as follows: roul-roul, r-r, min-min,

ave-ave, max-max and inv roul-inv roul.

Donor Petri dish and bacterium (p°, bP) are both selected based on r-r criterion.

The recipients (pR, bR) are selected as follows: roul-roul, r-r.

Donor Petri dish and bacterium (p°, bP) are both selected based on min-min

criterion. The recipients (pR, bR) are selected as follows: roul-roul, min-min.

Donor Petri dish and bacterium (p°, b°) are both selected based on ave-ave

criterion. The recipients (p?, bR) are selected as follows: roul-roul, ave-ave.
Donor Petri dish and bacterium (p°, bP) are both selected based on inv roul-inv
roul criterion. The recipients (p?, bR) are selected as follows: roul-roul, inv roul-

invroul.

Finally, the transduction experiments with a complete chromosome were only

carried out based on the criterion that leads to a better conjugation performance. In view
of the obtained results, experiments were performed selecting the donor Petri dish and
bacterium (pP, bP) with max-max criterion, whereas the recipients (pR, bR) were selected

based on roul-r criterion.

18
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4. Statistical analysis

The simulation experiments performance was evaluated as follows. In first place, we
obtained the average fitness of each Petri dish at the last generation G. Considering that P
is the total number of Petri dishes and r. the number of experimenta replicates, then the
total number of simulation trials was equa to P. r.. Following, a Multiple Box-and-
Whisker Plot (Tukey, 1977) was obtained with the average fitness values, considering
that each plot represents an experimental protocol with P. re values. Note that we used a
Notched Box-and-Whisker Plot. In this plot, a confidence interval for the median is

provided by a notch surrounding the median. The endpoints of the notches are located at

I0R
the median 1-5% such that the medians of two boxplots are significantly different at

approximately the 0.05 leve if the corresponding notches do not overlap. In each
experimental protocol, the Notched Box-and-Whisker Plot shows with a cross the mean
of the average fitness values (MAFy) for the P. r. Petri dishes of an experiment. The

MAFrvaueis given by the expression:
MAF = o %)

Next, we performed a Kruskal-Wallis test evaluating the assumption that the
medians of the average fitness values obtained under different protocols are equal. Note
that experimental efficiency increases as the mean of the average fitness values (MAF)
increases, thus when the MAF value displaces more to the top inside the box. The box
represents the interquartile range of the average fitness values in the Box-and-Whisker

Plot. Furthermore, since the length of the box representing the interquartile range is a
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measure of variability, given two experimental protocols, that protocol whose box has the
longest length will be the protocol driving the population to reach a higher number of

optimum solutions (Perales-Gravan and L ahoz-Beltra, 2008).

Only in experiment 3 we calculated the mean of the average fitness values but
now taking into account the Petri dish class. Thus, we obtained MAF values for the donor

Petri dishes (MAFp), the recipient Petri dishes (MAFR) and for those neither donor nor

recipient dishes (MAFBR):
MAF,= , ° (6)
D
MAFz= " (7
R
f
MAFBR= k=r-b-r (8)
T-D-R

where D isthe number of donor Petri dishes and R the number of recipient Petri dishes.

Note that in al the optimization problems (Section 3) D=R, being D and R equa

to 1. Therefore, we selected only one donor and recipient Petri dishes per generation.

5. Results

A remarkable result showing the role of transduction was obtained with
Michalewicz function. Figure 10 shows how PETRI approaches to the maximum function
value (9.66 in our experiments) as transduction probability p. comes near to 100%. A

Kruskal-Wallis test shown with a p-value equal to zero, that the differences among
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medians were statistically significant at the 95.0% confidence level. Thus, the genetic
algorithm performance is significantly improved no matter which one is the crossover
operator (conjugation, one-point recombination or two-points recombination). In
particular, in absence of transduction the medians of conjugation, one-point
recombination and two-points recombination were 8.87, 8.96 and 8.97, respectively.
However, when optimization experiments were performed including a transduction
operator (transferring a complete chromosome) then the medians of conjugation, one-
point recombination and two-points recombination were 9.29, 9.33 and 9.36, respectively.
The Bartlett, Cochran, and Levene tests were accomplished, testing the homogeneity of
variances. The obtained p-values were zero showing that differences among variances are
statigtically significant at the 95.0% confidence level. The conclusion is that variance (or
population variability) depends on transduction. In fact, the population variability reaches
a minimum value when a complete chromosome is transferred and the transduction
probability p. equal to 100%. However, it is important to note that in Nature only tiny
fragments or chromosomal segments of bacterial DNA are transduced and not coomplete
chromosomes. In agreement with Davis and Weller (1998) the genetic material carried by
bacteriophages is, conveniently, around 2% the length of the bacterial chromosome. An
interesting observation is that even when transduction is a major driving force behind
diversity in natural populations, in our simulation experiments transduction bring down
the variability of the population. The explanation could be that in natural populations
transduction occurs at random and at very low frequencies from 102 to 10° (Ogunseitan,
2008), whereas in the conducted experiments the chromosome or its segments were

selected with amedium or high probability and based on max-max criterion.

The Figure 11 shows a Multiple-Box-and-Whisker Plot of the maximum fitness
values obtained in the 0/1 knapsack problem. It is interesting to note how PETRI
approaches to highest fitness vaues as transduction probability p: comes near to 100%. A

Kruskal-Wallis test shown with a p-value equa to zero, that the differences among
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medians were statistically significant at the 95.0% confidence level. In consequence,
algorithm performance is significantly improved no matter which one is the used
crossover operator (conjugation, one-point recombination or two-points recombination).
In absence of transduction the median value of the obtained knapsacks under conjugation,
one-point recombination and two-points recombination were 2601.5, 2639.5 and 2612.0
respectively. However, in presence of transduction with ap, equal to 100% (transferring a
complete chromosome) the median values of the optimized knapsacks were 3214.0,
3253.0 and 3126.0, respectively. The Bartlett, Cochran, and Levene tests were
accomplished to examine the homogeneity of variances. The obtained p-values were zero
showing that differences of variances between the set of experiments without transduction
(labeled as 1, 6 and 11 in Figure 11) and the experiments including transduction are
statistically significant at the 95.0% confidence level. Once again, we conclude that
variance depends on transduction, decreasing the population variability when a complete

chromosomeis transferred.

Based on above results we achieved the following genera conclusion.
Transduction helps the population to reach a better optimum solution and it has an effect
on population variability. However, the optimum that is achieved with the transduction of
chromosome segments is always below with respect to the optimum that is reached when
transduction transfers a complete chromosome. On the other hand, when transduction
involves chromosome segments the population variability (or variance) is greater than the
variability that results of a complete chromosome transduction. That is, in agreement with
Figure 13, transduction of complete chromosomes, a mechanism that bears a resemblance
with migration (e.g. animals and plants), will push a population to a highest optimum but
lowest variability. In contrast, transduction of chromosome segments, a mechanism that is
closer to rea transduction in e.g. microorganisms, will move the population forward a
highest variability but lowest optimum value (Figure 13). Both situations could represent

different strategies of organisms during evolution, preventing premature convergence
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(Grefenstette, 1981). The transduction of chromosome segments results in a posterior
homologous recombination or crossover, promoting the sudden jump of the recipient
population towards better solutions in the evolutive or fitness landscape. The explanation
could be that the arrival and recombination of new genetic information (including good
Holland’'s schemata) is breaking the population equilibrium (Gould’s punctuated
equilibrium; see Gould and Eldredge, 1977) in the recipient Petri dish, triggering its
evolutionary change (Cohoon et al., 1987). Our findings support similar observations
done in Nature. For instance, Forde et al. (2004) found evaluating the coevolution of
bacterium E. coli and bacteriophage T7 that the local adaptation was lower in closed
communities than in the open communities, suggesting that gene flow was acting as

source of beneficial mutations in the open communities.

The Figure 12 shows the Multiple Box-and-Whisker Plot of the MAF; values
obtained for each one of the thirty-three types of transduction simulation experiments
carried out with the AM radio receiver (experiment 3). The Kruskal-Wallis test shows
with a p-value below to 2.200x10¢ that there are statistically significant differences
among the medians at the 95.0% confidence level. Comparing the control experiment (the
simulation experiment without transduction, labeled as 1 in Figure 12) with the two best
transduction experiments (a chromosome segment is transferred, labeled as 19 in Figure
12, and the transference of a complete chromosome, labeled as 33 in Figure 12), we
concluded as follows. No matter how is transduction the best results were obtained
(Figure 13) when the donor Petri dish and bacterium (pP, bP) are both selected based on
max-max criterion, being the recipients (pR, bR) selected with the roul-r criterion. Note
how the best transduction protocol is the one where the simulated ‘ bacteriophage’ selects
the donor Petri dish and bacterium both with maximum fitness, such that

max

1,..,p[ f, sz.] and ﬁ?ﬁ{ f,,f, ... f,], whereasthe recipients Petri dish and bacterium

are both selected based on stochastic methods such as a roulette wheel approach and the

uniform distribution procedure. In the Kruskal-Wallis test between the control experiment
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and the transduction experiments with chromosome segments (Figure 13) the obtained p-
value was equal to 1.603x10%. Since the p-value is less than 0.05 there is a statistically
significant difference between the medians at the 95.0% confidence level. Of a similar
way in the Kruskal-Wallis test between the control experiment and the transduction
experiments with complete chromosomes (Figure 13). In such case the obtained p-value
was below to 2.200x10%%, being statistically significant the differences between the

medians at the 95.0% confidence level.

In Figure 14a we show a representative performance graph (a Box-and-Whisker Plot per
generation) of the control experiments (without transduction and r.=50), as well as the
graph obtained for the best transduction experiments where only chromosome segments
are transferred (Figure 14b) and the transduction experiment transferring a complete
chromosome (Figure 14c). Furthermore, Figure 15 shows in the aforementioned

experiments the mean of the average fitness per generation (MAF). In the control

experiments (Figure 15a) the MAF is equivaent to the MAFpRr value per generation.

Note how in transduction experiments the highest slope (Figure 15b-15c) corresponds to
the donor Petri dishes (MAFo). In such figures note the overlapping between the
performance curves, thus the curve of the recipient Petri dishes (MAFg) and the curve of
the MAF value per generation calculated for all the Petri dishes (MAFy). The oscillating
behavior of MAFR is explained considering that Petri dish and bacterium recipients are
both selected applying stochastic procedures. Obviously, the worst performance is for

those Petri dishes or colonies that do not participate in the transduction experiments

(MAFBR).

6. Discussion

24



Nature Precedings : doi:10.1038/npre.2009.3732.1 : Posted 8 Sep 2009

Thirty years ago, Anderson (1970) suggested that ‘virus transduction’ could be
considered as one of the key mechanisms of horizontal gene propagation. This fact
suggests the importance of the horizontal gene transfer as evolutionary mechanism
because of transporting DNA segments from individuals belonging to one phylum to
individuals of another phylum. Furthermore, the evolutionary dynamic of populations
could depend on the transfer of DNA from one population to other. In fact, Syvanen
(1985) suggests that cross-species gene transfer could help to explain many experimental
observations. For instance, the rapid bursts in evolution (Gould' s punctuated equilibrium
hypothesis, see Gould and Eldredge, 1977) as well as the widespread occurrence of
parallelism (or convergent evolution of similar traits in the fossil record). According to
Margulis (1981) the acquisition and accumulation of random mutationsis not sufficient to
explain how inherited variations occur. Furthermore, whereas Darwinism emphasizes the
role of selection as the force behind evolution (in fact, selection is the main evolutive
mechanism underlying genetic algorithms), Margulis (1981) and other evolutionary

biologists emphasize the role of horizontal gene transfer and cooperation.

The simulation results are consistent with the general picture of transduction in
bacteria. The transduction and conjugation operators sufficiently capture the role of such
microbial genetic mechanisms in horizontal gene transfer. PETRI efficiency is shown
optimizing a benchmark function, solving the 0/1 knapsack problem and evolving an
optimum design of an AM radio receiver. Even when PETRI is not a distributed genetic
algorithm, most DGAs and cGAs applications use a simple process of chromosome
migration as only mechanism of horizontal gene transfer. However, we show how
inspired in microbia genetics it is possible to develop new algorithms, genetic operators
and simulation protocols that could be useful in Evolutionary Computation. For instance,
in PETRI algorithm we combine two different genetic mechanisms exhibited by real

bacteria. Of a side conjugation, that is a loca mechanism of horizontal information
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transfers within a population; of other transduction, thus a global mechanism of horizontal

information transfers between populations.

In a previous paper, Kubota et al. (1996) introduced VEGA addressing the possibility to
simulate transduction, a virus-evolutionary genetic algorithm. Their authors introduced a
virus infection operator and a virus fitness value, modeling two populations, the host
population and virus population. The main difference between this model and our model
is the fact that in VEGA there are two populations: a host population representing the
candidate solutions and the virus population (initially generated from host population)
representing a substring set of solutions. In consequence, in VEGA the underlying model
is the coevolution of two populations, a main host population and a secondary viral
population. In contrast, in PETRI there are several hosts or bacterial populations (or Petri
dishes) sharing solutions via transduction. Furthermore, in VEGA viruses propagate their
own substrings or chromosome segments among host individuals whereas in PETRI
viruses propagate only the host (or bacterial) chromosome or segments between the host
individuals. Another interesting difference is that in VEGA viruses represent a real
population, having each virus a fitness value. However, in our model viruses are
‘dummy’ agents responsible of the transduction mechanism. Finaly, in VEGA the host
population is not composed of bacteria since crossover is smulated asis usua in genetic
algorithms, thus one-point or two-points recombination (vertical gene transfer). In
contrast, PETRI simulates crossover based on a conjugation operator (horizontal gene
transfer) or aternatively as VEGA, thus using one-point or two-points recombination

(vertical genetransfer).

Finally, we believe that PETRI could be improved in several ways. For instance,

including other features and options not considered in the present algorithm, paralelizing

the algorithm to be run in a parallel computing system, or developing a routines library
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based on microbial genetics, promoting the search of new horizontal gene transfer

algorithmsin thefield of Evolutionary Computation.
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Fig. 1. Transduction mechanism (bacterium DNA, white rectangle; bacteriophage DNA,
grey rectangle). (a) Infection of a donor bacterium D with a bacteriophage. (b) Bacteria
and bacteriophage DNA segments mix inside donor bacterium D. A bacterial DNA
segment is packed inside the bacteriophage ‘head’ (c) being transferred to a recipient
bacterium R. Findly, inside the recipient bacterium R homologous recombination or
crossover occurs between the emigrant bacterial DNA segment and the target bacterial

chromosome.

Fig. 2. Transduction operator. (a) Transferring a chromosome segment: (step a) donor
bacterium D (bacterium DNA, white rectangle), (step b) recipient bacterium R (bacterium
DNA, grey rectangle) and chromosome segment D’ from donor bacterium, (step ¢) one
chromosome results insde R after transduction. (b) Transferring a complete
chromosome: (step @) donor bacterium D (bacterium DNA, white rectangle), (step b)
recipient bacterium R (bacterium DNA, grey rectangle) and chromosome D’ from donor
bacterium, (step c) one chromosome resultsinside R after transduction. (c) Migration and
crossover: (step a) donor bacterium D (bacterium DNA, white rectangle), (step b)
recipient bacterium R (bacterium DNA, grey rectangle) and the migrated chromosome D’
from donor bacterium, (step c) two chromosomes result inside R after migration and

crossover.

Fig. 3. Bacteria conjugation operator (Perales-Gravan and Lahoz-Beltra, 2008). Once a
couple of chromosomesi and j (or bacteria, D=donor, R=recipient) are selected from the
same population (or Petri dish), the gene transfer occurs from a random point i. on the
donor chromosome i (O=chromosome origin). Since transfer of the donor chromosomeis
amost never complete then the length ¢ of the strand (a copy) transferred to the recipient
cell R is simulated applying Monte Carlo method, assuming DNA lengths exponentially
distributed with a parameter @ (conjugation parameter). Finaly, the transferred strand

experiences crossover, resulting a recombinant chromosome | in bacterium R.
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Fig.4. AM radio receiver. (a) Electronic circuit of asimple crystal radio showing the main
electronic components to be optimized. (b) Radio enclosure details. (c) Bacterial
chromosome with 14 genes codifying for the main characteristics of an AM radio

receiver (from Perales-Gravan and Lahoz-Beltra, 2008).

Fig. 5. Horizontal gene transfer (HGT) mechanisms in bacteria. Conjugation is a
mechanism of HGT within population, whereas transduction is a HGT mechanism

between populations.

Fig. 6. Transduction experiment. The figure shows transduction from donors’ Petri dish
(pP) and bacterium (bP) to recipients Petri dish (p¥) and bacterium (bR). In the figure, P is
the total number of Petri dishes (or sub-populations), N is the number of bacteria (or

population size) per Petri dish and r.the number of experimental replicates.

Fig. 7. Multiple bacterial colonies (or Petri dishes) are communicated via bacteriophages,

cycling through generations searching for an optimum solution during G generations.

Fig. 8. SDS protocol (for details see text).

Fig. 9. AM radio receiver experiment with transduction transferring chromosome
segments. Note how this kind of simulation experiment is an example of specialized
transduction, where only three possible chromosome segments could be transferred by

bacteriophages (for explanation see text).

Fig. 10. Michalewicz function experiments with transduction transferring complete

chromosomes. The figure shows the medians (notches) and MAF (crosses) of the average
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fitness values obtained in fifteen different simulation experiments: Conjugation with py
equal to 0% (without transduction) (1), 25% (2), 50% (3), 75% (4) and 100% (5). One-
point recombination with p; equal to 0% (without transduction) (6), 25% (7), 50% (8),
75% (9) and 100% (10). Two-points recombination with p; equal to 0% (without
transduction) (11), 25% (12), 50% (13), 75% (14) and 100% (15).

Fig. 11. Knapsack problem experiments with transduction transferring complete
chromosomes. The figure shows the medians (notches) and MAF (crosses) of the
maximum fitness values obtained in fifteen different smulation experiments. Conjugation
with pr equal to 0% (without transduction) (1), 25% (2), 50% (3), 75% (4) and 100% (5).
One-point recombination with p; equal to 0% (without transduction) (6), 25% (7), 50%
(8), 75% (9) and 100% (10). Two-points recombination with p: equal to 0% (without
transduction) (11), 25% (12), 50% (13), 75% (14) and 100% (15).

Fig. 12. Multiple Box-and-Whisker Plot for the AM radio receiver problem. The figure
shows the medians (notches) and MAF (crosses) of the average fitness values obtained in
thirty-three different simulation experiments (donor Petri dish - donor bacterium,
recipient Petri dish - recipient bacterium). The following experiments were carried out
transferring chromosome segments with p; equal to 100%: (1) Control experiment
(without transduction). (2) r-r, r-r. (3) max-max, max-max. (4) ave-ave, ave-ave. (5) roul-
roul, roul-roul. (6) min-min, min-min. (7) inv roul-inv roul, inv-roul-inv roul. (8) roul-
roul , min-min. (9) roul-roul, ave-ave. (10) roul-roul, inv-roul-inv roul. (11) roul-roul,
max-max. (12) roul-roul, r-r. (13) min-min, roul-roul. (14) ave-ave, roul-roul. (15) inv
roul-inv roul, roul-roul. (16) max-max, roul-roul. (17) r-r, roul-roul. (18) max-max, roul-
roul. (19 ) max-max, roul-r. (20) max-max, roul-min. (21) max-max, roul-ave. (22) max-
max, roul-max. (23) max-max , roul-inv roul. (24) max-max, max-roul. (25) max-max,
max-r. (26) max-max, max-min. (27) max-max, max-ave. (28) max-max, max-inv roul.

Experiments transferring chromosome segments with p. equal to: (29) 75% and max-
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max, roul-r, (30) 50% and max-max, roul-r, (31) 25% and max-max, roul-r, (32) 0% and
max-max, roul-r. Finaly, experiment (33) was carried out transferring a complete

chromosome with p;equal to 100% and max-max, roul-r.

Fig. 13. Multiple Box-and-Whisker Plot for the AM radio receiver problem. The figure
shows the medians (notches) and MAF (crosses) of the average fitness values obtained in
the (a) control experiment (without transduction) and the two best transduction
experiments: (b) max-max, rul-r (transferring chromosome segments). (c) max-max, rul-r

(transferring a compl ete chromosome).

Fig. 14. Representative performance graph for the AM radio receiver problem showing
the Box-and-Whisker Plot per generation: (a) control experiment (without transduction)
and the two best transduction experiments: (b) max-max, rul-r (transferring chromosome

segments). (¢) max-max, rul-r (transferring a complete chromosome).

Fig. 15. Performance graph for the AM radio receiver problem: (@) control experiment
(without transduction) showing the mean of the average fitness per generation for the
total of Petri dishes (MAF). The performance graph in the two best transduction
experiments: (b) max-max, rul-r (transferring chromosome segments) and (¢) max-max,

rul-r (transferring a complete chromosome) showing MAF (thick and gray line), MAF

(dashed line), MAFk (peaks and valleysline) and MAF5 R (solid line) values.
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Figure 3
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