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Abstract

       At  present,  all  methods in  Evolutionary  Computation  are  bioinspired in  the 

fundamental principles of neo-Darwinism as well as on a vertical gene transfer. Thus, on 

a  mechanism  in  which  an  organism  receives  genetic  material  from  its  ancestor. 

Horizontal, lateral or cross-population gene transfer is any process in which an organism 

transfers a genetic segment to another one that is not its offspring. Virus transduction is 

one  of  the  key  mechanisms  of  horizontal  gene  propagation  in  microorganism  (e.g. 

bacteria). In the present paper, we model and simulate a transduction operator, exploring 

a  possible  role  and  usefulness  of  transduction  in  a  genetic  algorithm.  The  genetic 

algorithm including transduction has been named PETRI (abbreviation of  Promoting 

Evolution  Through  Reiterated  Infection).  The  efficiency  and  performance  of  this 

algorithm was evaluated using a benchmark function and the 0/1 knapsack problem. The 

utility was illustrated designing an AM radio receiver, optimizing the main features of the 

electronic components of the AM radio circuit as well as those of the radio enclosure. Our 

results shown how PETRI approaches to higher fitness values as transduction probability 

comes near to 100%. The conclusion is that transduction improves the performance of a 

genetic  algorithm,  assuming a  population  divided  among  several  sub-populations  or 

‘bacterial colonies’.

Keywords 

   Bacterial  genetic  algorithm,  horizontal  gene  transfer,  conjugation  operator, 

transduction operator. 
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1. Introduction

At  present,  all  methods  in  Evolutionary  Computation  (genetic  algorithms, 

evolutive  algorithms,  genetic  programming,  etc.)  are  bioinspired in  the  fundamental 

principles of neo-Darwinism (Lahoz-Beltra, 2008) as well as on a vertical gene transfer. 

That is, on a mechanism in which an organism receives genetic material from its ancestor 

from which it evolved. In fact, most thinking in Evolutionary Computation is focused on 

vertical gene transfer as well as in crossover and/or mutation operations. 

Microorganisms have been evolving on Earth for billions of years. Nowadays, there are 

several  reasons  for  which  microbial  evolution  experiments  have  received  increasing 

attention (Elena and Lenski, 2003). Such experiments include many bacteria and viruses 

as well as unicellular fungi. Microbiologists known from many years ago how bacteria 

are  able to  adapt  and evolve in  all  kinds  of  environments.  Bacteria  are  microscopic 

organisms  whose  single  cells  reproduce  by  a  process  of  binary  fission  or  asexual 

reproduction  bearing  a  resemblance  with  John  von  Neumann's  universal  constructor 

(1966). Thus, a bacterium is a self-replicating machine which chromosome is replicated 

and a copy is allocated to each of the bacterium daughter cells. Both daughter cells are 

identical excepting for those mutations occuring in daughter cells. A bacterial population 

(or colony) evolve according to an evolutive algorithm  similar to Dawkin’s biomorphs 

(Dawkins, 1986), powering their evolution the cumulative selection of mutations. For a 

long time, bacteria were thought to lack sexual reproduction and in consequence a way to 

transfer  genetic  material  between  cells.  However,  bacteria  as  single-cell  organisms 

exhibit significant phenomena of genetic transfer and crossover between cells. This kind 

of mechanisms belong to a particular kind of genetic transfer known as horizontal gene 

transfer. Horizontal, lateral or cross-population gene transfer is any process in which an 

organism, i.e. a donor bacterium, transfers a genetic segment to another one, a recipient 

bacterium,  which is  not  its  offspring.  In  the  biological  realm,  whereas  the  scope of 
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vertical  gene  transfer  is  the  population,  in  horizontal  gene  transfer  the  scope is  the 

biosphere.  This  particular  mode of  parasexuality between ‘relative  bacteria’  includes 

three genetic mechanisms: conjugation, transduction and transformation. In a previous 

paper (Perales-Graván and Lahoz-Beltra, 2008) we introduced an evolutionary algorithm 

through the substitution of crossover operation in a genetic algorithm by conjugation. 

Furthermore, microorganisms are very interesting individuals because they also exhibit 

‘social interactions’. Recently we found (Lahoz-Beltra et al., 2009) how the inclusion of 

the  ‘social  life  of  microorganisms’  into  the  genetic  algorithm  cycle,  significantly 

improves the algorithm’s performance. 

In  Nature,  microorganisms  such  as  bacteria  and  viruses  share  a  long  and  common 

evolutive  relationship.  This  relationship  is  mainly  promoted  by  bacteriophages  (or 

phages)  (Davis  et  al.,  1990),  thus  a  kind  of  viruses  that  multiply  themselves  inside 

bacteria by making use of the bacterial biosynthetic machinery. Some bacteriophages are 

able to move bacterial DNA (the ‘bacterial chromosome’) from one bacterium to another. 

This process is known as transduction. When bacteriophages infect a bacterial cell, their 

normal mode of reproduction uses the replication machinery of the bacterium, making 

numerous copies of its own viral genetic material (i.e. DNA or RNA). Soon the nucleic 

acid copies (or chromosome segments) are then packaged into newly synthesized copies 

of bacteriophage virions. Considering the life cycle of a particular bacteriophage, we can 

define two sorts of transduction (Figure 1). Generalized transduction occurs when ‘any 

part’ of the bacterial chromosome (instead of viral DNA) hitchhikes into the virus (i.e. T4 

phages in  Escherichia coli bacterium). However, when only ‘specific genes’ or certain 

special ‘segments’ of the bacterial chromosome can be transduced, such mistake is named 

as specialized transduction (i.e.  phages in Escherichia coli bacterium). Here we study 

the  possibility  of  developing  genetic  algorithms including  transduction  operations  as 

horizontal gene transfer mechanism. The efficiency and performance of transduction was 

evaluated using a benchmark function and the 0/1 knapsack problem. The utility was 
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illustrated designing an AM radio receiver, optimizing the main features of the electronic 

components of the AM radio circuit as well as those of the radio enclosure. Our results 

show how transduction  improves the performance of a genetic algorithm, assuming a 

population divided among several sub-populations or ‘bacterial colonies’.

It is important to point out that even when transduction in real bacteria involves 

migration at ‘cellular level’ and subsequent crossover, it is not the simple addition of both 

mechanisms. That is, Figure 2 depicts transduction operations as they are simulated in the 

present paper. To show differences between transduction (Figure 2a-b) and migration-

crossover,  Figure  2c  illustrates  how  migration  and  crossover  events  must  occur  in 

bacterial cells. In consequence, in transduction the transference of chromosome segments 

(Figure 2a) between bacterial populations or colonies is very different of migration (the 

occasional  exchange  of  individuals).  Migration  and  transduction  could  bear  a 

resemblance, but only when transduction involves the complete chromosome transference 

(Figure 2b) between bacterial populations. Furthermore, this kind of transference is a 

highly unlikely event in bacteria, taking place in these microorganisms the transduction of 

chromosome segments as is shown in Figure 2a. 

In this paper, we model and simulate the two kind of transduction operations described 

above (Figure 2a-b), examining a possible role and usefulness of this genetic mechanism 

in genetic algorithms. In a previous paper (Perales-Gravan and Lahoz-Beltra, 2008) we 

introduced a bacterial conjugation operator (Figure 3), showing its utility designing an 

AM radio receiver  (Figure 4).  Conjugation is one of the key genetic mechanisms of 

horizontal gene transfer between bacteria. Now, in the present paper we refer to a genetic 

algorithm  including  transduction  as  PETRI  (abbreviation  of  Promoting  Evolution 

Through  Reiterated  Infection).  We  have  investigated  the  transfer  of  genes  and 

chromosomes among sub-populations with a simulated ‘bacteriophage’. In the model we 

consider  a  structured  population divided among several  sub-populations  or  ‘bacterial 
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colonies’, bearing a resemblance with coarse grained distributed genetic algorithms. Each 

sub-population is represented as a  Petri dish (a glass or plastic cylindrical dish used to 

culture microorganisms). However, note that even when we divide a population into sub-

populations the proposed algorithm is sequential. Thus, the algorithm is not a distributed 

one  since  we  used  a  mono-processor  computer  and  the  algorithm  has  not  been 

parallelized.  Moreover,  the  migration  mechanism  is  synchronous  since  genes  and 

chromosome transferences  were  both  between  sub-populations  and  during  the  same 

generation.  Therefore,  our  approach  could  be  related  with  those  models  of  Cellular 

Genetic Algorithms (cGA) (Alba and Dorronsoro, 2008) adopted also for mono-processor 

machines,  with  no  relation  to  parallelism  at  all.  Nevertheless,  the  cGA  concept  of 

neighborhood is replaced by the notion of sub-population or ‘bacterial colony’ and the 

migration of solutions is substituted in our approach by the mechanism of transduction. In 

our model we assumed that bacteria are able to display crossover through conjugation 

instead performing one-point or two-points recombination. Moreover, we assume that no 

vertical gene transfer mechanism is present in bacterial populations.

With the purpose to study the performance of the transduction operator, we used different 

optimization  problems.  Experiments  carried  out  in  presence  of  transduction  were 

compared  with  control  experiments,  thus  experiments  performed  in  absence  of 

transduction. Similarly, we compared the transduction performance under the three types 

of crossover: conjugation, one-point or two-points recombination. We are interested in 

the study of genetic algorithms based on horizontal gene transfer mechanisms, mainly 

conjugation  and  transduction  operations.  It  is  important  to  note  that  even  when 

conjugation and transduction are both horizontal gene transfer mechanisms, there are 

some relevant differences between both. In first place, whereas conjugation involves two 

bacteria from the same population, the bacteria involved in transduction could belong to 

different populations. In consequence, conjugation is a genetic mechanism of horizontal 

gene  transfer  within a  population,  whereas  transduction  is  a  genetic  mechanism of 
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horizontal gene transfer  between populations (Figure 5). Secondly, in conjugation the 

length  of  the  transferred  genetic  segment  is  variable,  whereas  in  transduction  the 

transferred segment length is always constant. In Section 2 of this paper, we present the 

model description and PETRI algorithm, and in Section 3 we describe several simulation 

experiments.  Section 4  introduces  the  statistical  analysis,  and  Section 5 presents  the 

whole results of the computer simulation experiments. Finally, Section 6 discusses the 

possible impact of this work, suggesting future directions of advancement. 

2. Model description 

In  this  section,  we  introduce  the  transduction  model  as  well  as  the  PETRI 

implementation,  thus  the  algorithm that  results  once  transduction  is  included  into  a 

genetic algorithm.

2.1. Transduction model

Let b be a chromosome (i.e. bacterium; 1,.., j ,..., N) and p a sub-population (i.e. 

Petri dish; 1 ,...,  i ,...,  P) then a transduction operation (Figure 2) is defined as follows. 

Transduction is the transfer of genetic material from a Petri dish and bacterium donors 

(pD, bD) to a Petri dish and bacterium recipients (pR, bR). When the transference involves a 

chromosome segment (Figure 2a) the result is a recombinant chromosome in the recipient 

Petri dish pR. However, the transference of a complete chromosome (Figure 2b) results in 

the substitution of one chromosome of the recipient Petri dish pR by the transferred one. It 

is important to note that ‘bacterium’ and ‘Petri dish’ terms are used along the paper as 

‘chromosome’ and ‘sub-population’ synonyms, respectively. 
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The  donors,  Petri  dish  and bacterium,  are  both  selected  applying  one  of  the 

following criteria. Let  pD be the donor Petri dish representing the sub-population from 

which to select the donor bacterium. The selection of the donor Petri dish is based on one 

of the following criteria:

a) Random selection (method r).- In this case a Petri dish pD is chosen at random 

from a uniform distribution according with the range [1, P].

b) Maximum fitness (method max).- Given P Petri dishes, the Petri dish pD with 

maximum fitness is selected. Thus, if if  is the fitness value of the ith donor Petri 

dish, then we select { }max
1,.., 1 2, ,...,P if f f .

c) Average fitness (method ave).- Given P Petri dishes, the most representative 

Petri dish pD with fitness value if  is selected, such that 
min

1,.., 0P i pf f− ≥  where pf  

is the average fitness of the P donor dishes.

d) Roulette wheel dish selection (method  roul).- In this case a Petri dish  pD is 

chosen spinning a roulette wheel that assigns to each dish a slot whose arc size is 

proportional to its fitness value if .

Once a donor Petri dish is selected, the choice of the donor bacterium bD is conducted 

according to one of the following criteria: 

a) Random selection (method r).- In this case a bacterium bD is chosen at random 

from a uniform distribution according with the range [1, N].
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b) Maximum fitness (method  max).-  Given  N bacteria,  the bacterium  bD with 

maximum fitness is selected. That is, such that { }max
1,.., 1 2, ,...,N jf f f  where jf  is the 

fitness value of the jth donor bacterium.

c)  Average  fitness  (method  ave).-  Given  N bacteria,  the  most  representative 

bacterium bD with fitness value  jf  is selected, such that  0
min

,..,1
≥− ff j

N
 where 

f  is the average fitness of the bacterial population or donor Petri dish pD.

d) Roulette wheel bacterial selection (method roul).- In this case a bacterium bD is 

chosen spinning a roulette wheel that assigns to each dish a slot whose arc size is 

proportional  to  its  fitness value  jf .  Note that  this  method is  the well-known 

roulette wheel parents selection. 

The recipient Petri dish and bacterium are both selected as follows. The selection 

of the recipient Petri dish pR is conducted through one of the following criteria:

a) Random selection (method r).- In this case a Petri dish pR is chosen at random 

from a uniform distribution according with the range [1, P].

b) Minimum fitness (method min).- Given P Petri dishes, the Petri dish  pR with 

minimum fitness is selected. That is,  { }min
1,.., 1 2, ,...,P if f f  where  if  is the fitness 

value of the ith recipient bacterium.

c) Average fitness (method ave).- Given P Petri dishes, the most representative 

Petri dish pR with fitness value if  is selected. Thus, 
min

1,.., 0P i pf f− ≥  where pf  is 

the average fitness of the P recipient dishes.
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d) Inverse roulette wheel dish selection (method inv roul).- In this case a Petri dish 

pR is chosen spinning a roulette wheel that assigns to each dish a slot whose arc 

size is proportional to the inverse of its fitness value, thus 
1

if
.

Once  a  recipient  Petri  dish  is  chosen,  the  selection  of  the  receptor  bacterium  bR is 

conducted according to one of the following criteria: 

a) Random selection (method r).- In this case a bacterium bR is chosen at random 

from a uniform distribution according with the range [1, N].

b)  Minimum fitness  (method  min).-  Given  N bacteria,  the  bacterium  bR with 

minimum fitness is selected. That is,  { }min
1,.., 1 2, ,...,N jf f f  where jf  is the fitness 

value of the jth recipient bacterium.

c)  Average  fitness  (method  ave).-  Given  N bacteria,  the  most  representative 

bacterium bR with fitness value  jf  is selected, such that  0
min

,..,1
≥− ff j

N
 where 

f  is the average fitness of the bacterial population or recipient Petri dish pR.

d) Inverse roulette wheel bacterial selection (method  inv roul).- In this case a 

bacterium bR   is chosen spinning a roulette wheel that assigns to each dish a slot 

whose arc size is proportional to the inverse of its fitness value, thus 
jf

1
.

2.2.  PETRI: A genetic algorithm with simulated transduction.
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The current  PETRI (abbreviation of  Promoting  Evolution  Through  Reiterated 

Infection) algorithm (Figure 6) uses a population size of N, performing re replicates, with 

P being  the  total  number  of  Petri  dishes  or  sub-populations.  Thus,  we performed  a 

number of re.P trials of each simulation experiment. The algorithm cycles through epochs 

(Figure 7)  searching for  an  optimum solution until  a  maximum of  G generations  is 

reached. Once (pD, bD) and (pR, bR) are selected, only one ‘bacteriophage’ is assumed to 

participate during each transduction event. The PETRI algorithm is summarized in the 

following pseudocode description: 

        

               ________________________________________________________

              /* PETRI: Genetic Algorithm with Transduction */

1. t:=0; 

2. Initialization: Generate  P Petri dishes (or sub-populations) 

with N random bacteria (or chromosomes).

3. WHILE not stop condition DO

      /* Genetic Algorithm */

(3.1) FOR each P Petri dish DO

Evaluation of chromosomes

Selection

Crossover (conjugation, one-point, two-points) 

Mutation

                    (3.2) END FOR

     /* End of Genetic Algorithm */

4. Transduction: (pD, bD) (pR, bR)

5. t:=t+1;

6. END WHILE;

/* End of PETRI */

               ________________________________________________________

Starting  with  a  random  population  of  chromosomes  (or  bacteria)  selection, 

crossover, mutation, and transduction were simulated, obtaining new generations of equal 

population size. Once the initial population of chromosomes was obtained at random, the 

order in which the genetic operators were applied was in agreement with the protocol 
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SDS (Lahoz-Beltra,  2001;  Perales-Gravan  and  Lahoz-Beltra,  2004).  This  protocol  is 

inspired in DNA shuffling, an experimental method used in biotechnology for improving 

in  vitro protein activity  and functionality.  In  the  present  simulation experiments,  the 

protocol  SDS  (Figure  8)  involves  a  cycle  of  crossover  and  mutation,  as  well  as 

transduction,  through  ng generations.  This  phase  is  followed  by  repeated  cycles  of 

crossover and transduction, one per generation, in absence of mutation. Considering the 

performance  of  experiments  previously  conducted  the  simulation  experiments  were 

carried out setting up ng equal to 25. 

2.2.1. Selection

At each generation, the fitness of each chromosome was evaluated using a fitness 

function that depends on the chosen optimization problem. Once the chromosomes are 

evaluated, we selected the crossover (or mating) pool of the next generation using the 

roulette  wheel  parents  selection  algorithm (Goldberg,  1989;  Lahoz-Beltra,  2004).  Of 

course,  other selection schemes are possible such as tournament selection,  truncation 

selection, as well as linear and exponential ranking selection. However, the roulette wheel 

parents  selection  scheme  bears  a  better  resemblance  to  Darwinian  natural  selection 

(Lahoz-Beltra, 2001).

2.2.2. Crossover

Once  a  new generation  of  offspring  chromosomes is  obtained,  then  pairs  of 

chromosomes are randomly selected within a sub-population or Petri dish. Once a couple 

of chromosomes (or bacteria) {#i, #j} is selected, whether or not we are going to perform 

crossover  on the current  pair  of  chromosomes {#i,  #j} is  decided on the basis  of  a 

Bernoulli trial regarding conjugation as having a given probability  pc (or alternatively 

instead conjugation, crossover is conducted via one-point or two-points recombination).
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2.2.3. Mutation

Mutation of a gene was simulated changing at random the value gene, choosing 

the mutated value from a uniform distribution with similar range of those defined to 

obtain the initial population of chromosomes. Once again, whether or not to change a 

gene value on a chromosome is decided on the basis of a Bernoulli trial, mutation being a 

success with a given probability pm (mutation probability).

2.2.4. Transduction

Transduction was simulated based on the model described in Section 2.1. The 

operator requires the selection of the Petri dish and bacterium donors (pD, bD) as well as 

the Petri  dish and bacterium recipients  (pR,  bR).  Once (pD,  bD)  and (pR,  bR)  are  both 

selected, whether or not we are going to perform transduction on the current pair  is 

decided  on  the  basis  of  a  Bernoulli  trial  regarding  transduction  as  having  a  given 

probability pt (transduction probability).

3. Simulation experiments

The performance of  the  simulated  transduction was  studied  considering three 

optimization problems. The first problem uses a benchmark function and the second one 

is the 0/1 knapsack problem. Finally, we illustrated the usefulness of the transduction in a 

real-life application problem described in Perales-Gravan and Lahoz-Beltra (2008).

3.1. Experiment 1  
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A first optimization problem was an instance of the Michalewicz function. We 

used 10 variables or genes, such that:

2
210

1

( ) ( ) ; 0

m

i
i i

i

i x
f x sen x sen x π

π=

? ?? ?
=? ? ?? ?? ?? ?? ?

           (1)

The simulation experiments were carried out with N = 500 chromosomes (or bacteria), re 

= 15 and P = 4 Petri dishes. Therefore, we performed 60 trials (15 replicates x 4 Petri 

dishes) of each experiment. The transduction experiments were conducted transferring 

only  complete  chromosomes,  cycling the algorithm through epochs  searching  for  an 

optimum until a maximum of 700 generations (G) is reached. In each trial, we calculated 

the  population  average  fitness  at  the  last  generation.  The  crossover  and  mutation 

probabilities  were  set  up  to  pc=0.75 and  pm=0.05,  respectively.  When crossover  was 

simulated through conjugation then the conjugation parameter was set up as 0.5α = . 

Since preliminary results (experiment 3) suggested which one is the best transduction 

policy, transduction was simulated selecting donors (pD, bD) based on max-max criterion, 

and recipients (pR, bR) using roul-r criterion. The simulation experiments were conducted 

setting  up  the  transduction  probabilities  pt to  0%  (control  experiment,  without 

transduction), 25%, 50%, 75% and 100%. We performed simulation experiments with 

PETRI using conjugation, one-point recombination and two-points recombination.  

3.2. Experiment 2

A  second  optimization  problem  was  the  well-known  0/1  knapsack  problem. 

Assume we have j kinds of items and each item has a value vj and weight wj, being the 

maximum weight  that  we can  carry  in  the  knapsack  equal  to  W.  The  0/1  knapsack 
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problem restricts the number of each kind of item xj to 0 or 1. The aim is to maximize 

j
j

j xv∑  subjected to Wxw j
j

j ≤∑ . The fitness was calculated by the usual expression:

,

( )

,

j j j j
j j

j j j j
j j

w x W v x

f x

w x W W w x

=
> −

? ?

? ?
     (2)

using the benchmark knapsack instance ‘knap100’ published on a web site by the Swiss 

Federal  Institute  of  Technology Zurich (2008).  The instance includes  the values and 

weights of 100 items being maximum weight W=2732. The simulation experiments were 

carried out with  N = 200 chromosomes (or bacteria), re = 15 and  P = 4 Petri dishes, 

conducting 60 trials (15 replicates x 4 Petri dishes) of each experiment. The transduction 

experiments  transferred  only  complete  chromosomes,  cycling  the  algorithm  through 

epochs until a maximum of 1000 generations (G) is reached. In each trial, we obtained the 

maximum fitness at the last generation. The crossover and mutation probabilities were set 

up  to  pc=0.75  and  pm=0.05,  respectively.  When  crossover  was  simulated  through 

conjugation  then  the  conjugation  parameter  was  set  up  as  0.5α = .  Once  again, 

transduction was simulated selecting donors (pD,  bD) based on  max-max criterion and 

recipients (pR, bR) using roul-r criterion. The transduction probability pt was set up to 0% 

(control experiment, without transduction), 25%, 50%, 75% and 100%. We performed 

simulation experiments with PETRI using conjugation, one-point recombination and two-

points recombination.  

3.3. Experiment 3

An example of the usefulness of transduction in a real-life application problem 

consists  in  finding  the  main  features  of  the  electronic  components  of  an  AM radio 
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receiver as well as those of the radio enclosure. The current PETRI algorithm uses a 

population  size  of  500  (N)  and  9  (P)  Petri  dishes,  performing  fifty  replicates  (re). 

Therefore, we performed 450 trials (50 replicates x 9 Petri dishes) of each experiment. 

The algorithm cycles through epochs searching for an optimum AM radio receiver until a 

maximum of 200 generations (G) is reached. In each trial, we calculated the population 

average fitness at the last generation. The crossover and mutation probabilities were set to 

pc=0.75 and  pm=0.05, respectively. Since crossover was simulated via conjugation, the 

parameter  α  was  set  to  0.5.  The initial  population of  chromosomes (Figure 3)  was 

obtained at random, choosing the gene values from a uniform distribution according with 

the ranges described in Perales-Gravan and Lahoz-Beltra (2008). At each generation, the 

fitness of each chromosome, thus the degree of achievement of the AM radio receiver 

circuit  as  well  as  the main features  of  the radio enclosure,  was evaluated using the 

following fitness function:

. D RCP P
oscillator radio enclosuref f e f+= +      (3)

where foscillator is the fitness of the oscillator circuit and fradio enclosure the fitness of the radio 

enclosure designed to house the radio circuit. In function (3)  PD as well as  PRC are two 

punishment  terms  related  with  diode  and  RC  filter  performance,  respectively. 

Considering the intricacy of  f,  we suggest that for a detailed explanation see Perales-

Gravan and Lahoz-Beltra (2008). 

3.3.1. Transduction policy

Based on the present optimization problem two types of transduction experiments 

were conducted depending on that is transferred: chromosome segments (Figure 2a), or a 

complete chromosome (Figure 2b). 
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In those experiments with chromosome segments, we studied which one of the criteria 

described in Section 2.1 leads to a superior conjugation performance. We assume that 

conjugation results obtained with the AM radio receiver problem could be extended to 

one-point  or  two-points  recombination  crossovers  as  well  as  to  other  optimization 

problems.  In  order  to  simplify  the  number  of  possible  simulation  experiments  we 

assumed that most of the experiments are conducted considering the following restriction: 

the Petri dish and bacterium donors were both selected applying the same method. Thus, 

the  Petri  dish  and bacterium donors  were  both  obtained  applying  random selection, 

maximum fitness,  average  fitness  and  roulette  wheel  selection.  The  aforementioned 

criteria were labeled as r-r, max-max, ave-ave and roul-roul, respectively. Similarly, we 

considered that the Petri dish and bacterium recipients were both selected also applying 

similar methods, thus: random selection, minimum fitness, average fitness and the inverse 

roulette wheel selection. The methods mentioned previously were labeled as r-r, min-min, 

ave-ave and  inv roul-inv roul,  respectively.  We also considered for a few cases the 

possibility that a Petri dish and bacterium were both selected applying different methods. 

Once the donors (pD,  bD)  and recipients (pR,  bR)  were selected then the chromosome 

segment to be transduced was chosen at random applying the following method. The 

genetic segment transferred from bD to bR via a simulated bacteriophage (Figure 9) was 

chosen with a random value s from a uniform distribution with range [0, 2], such that:

0 ,             'Oscillator '

1 , 'Diode + RC Filter'

2 ,              'Enclosure'

s =      (4)

Note  how  in  this  simulation  experiment  we  simulate  ‘specialized  transduction’, 

transferring  ‘complete  blocks’  or  chromosome segments.  The  following transduction 

simulation experiments were conducted: 
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a) Donor Petri  dish and bacterium (pD,  bD)  are  both selected based on  max-max 

criterion. The recipients (pR,  bR)  are selected as follows: roul-roul,  roul-r,  roul-

min, roul-ave, roul-max, roul-inv roul, max-roul, max-r, max-min, max-ave, max-

max and max-inv roul. 

b) Donor Petri  dish and bacterium (pD,  bD)  are  both selected based on  roul-roul 

criterion. The recipients (pR,  bR) are selected as follows: roul-roul,  r-r,  min-min, 

ave-ave, max-max and inv roul-inv roul.

c) Donor Petri dish and bacterium (pD, bD) are both selected based on r-r criterion. 

The recipients (pR, bR) are selected as follows: roul-roul, r-r.

d) Donor  Petri  dish and bacterium (pD,  bD)  are  both selected  based on  min-min 

criterion. The recipients (pR, bR) are selected as follows: roul-roul, min-min.

e) Donor  Petri  dish  and  bacterium (pD,  bD)  are  both  selected  based  on  ave-ave 

criterion. The recipients (pR, bR) are selected as follows: roul-roul, ave-ave.

f) Donor Petri dish and bacterium (pD, bD) are both selected based on inv roul-inv  

roul criterion. The recipients (pR, bR) are selected as follows: roul-roul, inv roul-

inv roul.

Finally,  the transduction experiments with a complete chromosome were only 

carried out based on the criterion that leads to a better conjugation performance. In view 

of the obtained results, experiments were performed selecting the donor Petri dish and 

bacterium (pD, bD) with max-max criterion, whereas the recipients (pR, bR) were selected 

based on roul-r criterion.
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4. Statistical analysis

The simulation experiments performance was evaluated as follows. In first place, we 

obtained the average fitness of each Petri dish at the last generation G. Considering that P 

is the total number of Petri dishes and re the number of experimental replicates, then the 

total  number of simulation trials was equal to  P.  re.  Following,  a  Multiple Box-and-

Whisker Plot (Tukey, 1977) was obtained with the average fitness values, considering 

that each plot represents an experimental protocol with P. re values. Note that we used a 

Notched Box-and-Whisker  Plot.  In  this  plot,  a  confidence interval  for  the median is 

provided by a notch surrounding the median. The endpoints of the notches are located at 

the median 1.5
IQR

n
such that the medians of two boxplots are significantly different at 

approximately  the  0.05  level  if  the  corresponding  notches  do  not  overlap.  In each 

experimental protocol, the Notched Box-and-Whisker Plot shows with a cross the mean 

of the average fitness values (MAFT) for the  P.  re Petri dishes of an experiment. The 

MAFT value is given by the expression: 

MAFT = 

.

1

.

eP r

k
k

e

f

P r
=      (5)

 Next, we performed a Kruskal-Wallis test  evaluating the assumption that the 

medians of the average fitness values obtained under different protocols are equal. Note 

that experimental efficiency increases as the mean of the average fitness values (MAF) 

increases, thus when the MAF value displaces more to the top inside the box. The box 

represents the interquartile range of the average fitness values in the Box-and-Whisker 

Plot. Furthermore, since the length of the box representing the interquartile range is a 
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measure of variability, given two experimental protocols, that protocol whose box has the 

longest length will be the protocol driving the population to reach a higher number of 

optimum solutions (Perales-Gravan and Lahoz-Beltra, 2008). 

Only in  experiment 3 we calculated the mean of the average fitness values but 

now taking into account the Petri dish class. Thus, we obtained MAF values for the donor 

Petri dishes (MAFD), the recipient Petri dishes (MAFR) and for those neither donor nor 

recipient dishes (MAF D R ):

MAFD = D
D

f

D
      (6)

MAFR = R
R

f

R
       (7)

MAF D R = 
k

k T D R

f

T D R
= − −

− −
  (8)

where D is the number of donor Petri dishes and R the number of recipient Petri dishes. 

Note that in all the optimization problems (Section 3) D=R, being D and R equal 

to 1. Therefore, we selected only one donor and recipient Petri dishes per generation.

5. Results

A  remarkable  result  showing  the  role  of  transduction  was  obtained  with 

Michalewicz function. Figure 10 shows how PETRI approaches to the maximum function 

value (9.66 in our experiments) as transduction probability  pt comes near to 100%.  A 

Kruskal-Wallis  test  shown with a  p-value  equal  to  zero,  that  the  differences  among 
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medians were statistically significant at the 95.0% confidence level. Thus, the genetic 

algorithm performance is significantly improved no matter which one is the crossover 

operator  (conjugation,  one-point  recombination  or  two-points  recombination).  In 

particular,  in  absence  of  transduction  the  medians  of  conjugation,  one-point 

recombination  and two-points  recombination  were  8.87,  8.96  and 8.97,  respectively. 

However,  when  optimization  experiments  were  performed  including  a  transduction 

operator (transferring a complete chromosome) then the medians of conjugation, one-

point recombination and two-points recombination were 9.29, 9.33 and 9.36, respectively. 

The Bartlett,  Cochran, and Levene tests were accomplished, testing the homogeneity of 

variances. The obtained p-values were zero showing that differences among variances are 

statistically significant at the 95.0% confidence level. The conclusion is that variance (or 

population variability) depends on transduction. In fact, the population variability reaches 

a  minimum value  when a  complete  chromosome is  transferred  and the  transduction 

probability  pt equal to 100%. However, it is important to note that in Nature only tiny 

fragments or chromosomal segments of bacterial DNA are transduced and not coomplete 

chromosomes. In agreement with Davis and Weller (1998) the genetic material carried by 

bacteriophages is, conveniently, around 2% the length of the bacterial chromosome. An 

interesting observation is that even when transduction is a major driving force behind 

diversity in natural populations, in our simulation experiments transduction bring down 

the variability of the population. The explanation could be that in natural populations 

transduction occurs at random and at very low frequencies from 10-2 to 10-10 (Ogunseitan, 

2008),  whereas  in  the  conducted experiments  the  chromosome or  its  segments  were 

selected with a medium or high  probability and based on max-max criterion. 

The Figure 11 shows a Multiple-Box-and-Whisker Plot of the maximum fitness 

values  obtained  in  the  0/1  knapsack  problem.  It  is  interesting  to  note  how PETRI 

approaches to highest fitness values as transduction probability pt comes near to 100%. A 

Kruskal-Wallis  test  shown with a  p-value  equal  to  zero,  that  the  differences  among 
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medians were statistically significant  at  the 95.0% confidence level.  In  consequence, 

algorithm  performance  is  significantly  improved  no  matter  which  one  is  the  used 

crossover operator (conjugation, one-point recombination or two-points recombination). 

In absence of transduction the median value of the obtained knapsacks under conjugation, 

one-point recombination and two-points recombination were 2601.5, 2639.5 and 2612.0 

respectively. However, in presence of transduction with a pt equal to 100% (transferring a 

complete  chromosome) the  median  values  of  the  optimized  knapsacks  were  3214.0, 

3253.0  and  3126.0,  respectively.  The  Bartlett,  Cochran,  and  Levene tests  were 

accomplished to examine the homogeneity of variances. The obtained p-values were zero 

showing that differences of variances between the set of experiments without transduction 

(labeled as 1, 6 and 11 in Figure 11) and the experiments including transduction are 

statistically  significant  at  the  95.0% confidence level.  Once again,  we conclude  that 

variance depends on transduction, decreasing the population variability when a complete 

chromosome is transferred.

Based  on  above  results  we  achieved  the  following  general  conclusion. 

Transduction helps the population to reach a better optimum solution and it has an effect 

on population variability. However, the optimum that is achieved with the transduction of 

chromosome segments is always below with respect to the optimum that is reached when 

transduction transfers a complete chromosome. On the other hand, when transduction 

involves chromosome segments the population variability (or variance) is greater than the 

variability that results of a complete chromosome transduction. That is, in agreement with 

Figure 13, transduction of complete chromosomes, a mechanism that bears a resemblance 

with migration (e.g. animals and plants), will push a population to a highest optimum but 

lowest variability. In contrast, transduction of chromosome segments, a mechanism that is 

closer to real transduction in e.g. microorganisms, will move the population forward a 

highest variability but lowest optimum value (Figure 13). Both situations could represent 

different  strategies  of  organisms during evolution,  preventing premature convergence 
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(Grefenstette, 1981). The transduction of chromosome segments results in a posterior 

homologous recombination or crossover,  promoting the sudden jump of the recipient 

population towards better solutions in the evolutive or fitness landscape. The explanation 

could be that the arrival and recombination of new genetic information (including good 

Holland’s  schemata)  is  breaking  the  population  equilibrium  (Gould’s  punctuated 

equilibrium; see Gould and Eldredge,  1977) in the recipient Petri  dish, triggering its 

evolutionary change (Cohoon et al.,  1987). Our findings support similar observations 

done in Nature. For instance, Forde et al. (2004) found evaluating the coevolution of 

bacterium  E. coli and bacteriophage T7 that the local adaptation was lower in closed 

communities than in the open communities,  suggesting that gene flow was acting as 

source of beneficial mutations in the open communities. 

The Figure 12 shows the Multiple Box-and-Whisker Plot of the MAFT values 

obtained for each one of the thirty-three types of transduction simulation experiments 

carried out with the AM radio receiver (experiment 3). The Kruskal-Wallis test shows 

with a  p-value below to 2.200x10-16 that  there are  statistically significant  differences 

among the medians at the 95.0% confidence level. Comparing the control experiment (the 

simulation experiment without transduction, labeled as 1 in Figure 12) with the two best 

transduction experiments (a chromosome segment is transferred, labeled as 19 in Figure 

12, and the transference of a complete chromosome, labeled as 33 in Figure 12), we 

concluded as  follows.  No matter  how is  transduction the  best  results  were  obtained 

(Figure 13) when the donor Petri dish and bacterium (pD, bD) are both selected based on 

max-max criterion, being the recipients (pR,  bR) selected with the  roul-r criterion. Note 

how the best transduction protocol is the one where the simulated ‘bacteriophage’ selects 

the  donor  Petri  dish  and  bacterium  both  with  maximum  fitness,  such  that 

{ }max
1,.., 1 2, ,...,P if f f  and { }max

1,.., 1 2, ,...,N jf f f , whereas the recipients Petri dish and bacterium 

are both selected based on stochastic methods such as a roulette wheel approach and the 

uniform distribution procedure. In the Kruskal-Wallis test between the control experiment 
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and the transduction experiments with chromosome segments (Figure 13) the obtained p-

value was equal to 1.603x10-08. Since the p-value is less than 0.05 there is a statistically 

significant difference between the medians at the 95.0% confidence level. Of a similar 

way in  the  Kruskal-Wallis  test  between the  control  experiment  and  the  transduction 

experiments with complete chromosomes (Figure 13). In such case the obtained p-value 

was  below to  2.200x10-16,  being  statistically  significant  the  differences  between  the 

medians at the 95.0% confidence level. 

In Figure 14a we show a representative performance graph (a Box-and-Whisker Plot per 

generation) of the control experiments (without transduction and  re=50), as well as the 

graph obtained for the best transduction experiments where only chromosome segments 

are  transferred (Figure  14b)  and the transduction experiment  transferring  a  complete 

chromosome  (Figure  14c).  Furthermore,  Figure  15  shows  in  the  aforementioned 

experiments  the  mean  of  the  average  fitness  per  generation  (MAF).  In  the  control 

experiments (Figure 15a) the MAFT is equivalent to the MAF D R value per generation. 

Note how in transduction experiments the highest slope (Figure 15b-15c) corresponds to 

the  donor  Petri  dishes  (MAFD).  In  such  figures  note  the  overlapping  between  the 

performance curves, thus the curve of the recipient Petri dishes (MAFR) and the curve of 

the MAF value per generation calculated for all the Petri dishes (MAFT). The oscillating 

behavior of MAFR is explained considering that Petri dish and bacterium recipients are 

both selected applying stochastic procedures. Obviously, the worst performance is for 

those Petri  dishes or  colonies that do not  participate in the transduction experiments 

(MAF D R ).  

6. Discussion

24

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

73
2.

1 
: P

os
te

d 
8 

S
ep

 2
00

9



Thirty years ago, Anderson (1970) suggested that ‘virus transduction’ could be 

considered  as  one  of  the  key  mechanisms of  horizontal  gene  propagation.  This  fact 

suggests  the  importance  of  the  horizontal  gene  transfer  as  evolutionary  mechanism 

because of transporting DNA segments from individuals belonging to one phylum to 

individuals of another phylum. Furthermore, the evolutionary dynamic of populations 

could depend on the transfer of DNA from one population to other. In fact, Syvanen 

(1985) suggests that cross-species gene transfer could help to explain many experimental 

observations. For instance, the rapid bursts in evolution (Gould’s punctuated equilibrium 

hypothesis,  see  Gould and Eldredge,  1977)  as well  as  the  widespread occurrence of 

parallelism (or convergent evolution of similar traits in the fossil record). According to 

Margulis (1981) the acquisition and accumulation of random mutations is not sufficient to 

explain how inherited variations occur. Furthermore, whereas Darwinism emphasizes the 

role of selection as the force behind evolution (in fact, selection is the main evolutive 

mechanism  underlying  genetic  algorithms),  Margulis  (1981)  and  other  evolutionary 

biologists emphasize the role of horizontal gene transfer and cooperation.

The simulation results are consistent with the general picture of transduction in 

bacteria. The transduction and conjugation operators sufficiently capture the role of such 

microbial genetic mechanisms in horizontal gene transfer.  PETRI efficiency is shown 

optimizing a benchmark function, solving the 0/1 knapsack problem and evolving an 

optimum design of an AM radio receiver. Even when PETRI is not a distributed genetic 

algorithm, most  DGAs and cGAs applications  use  a  simple process  of  chromosome 

migration  as  only  mechanism of  horizontal  gene  transfer.  However,  we  show  how 

inspired in microbial genetics it is possible to develop new algorithms, genetic operators 

and simulation protocols that could be useful in Evolutionary Computation. For instance, 

in PETRI algorithm we combine two different genetic mechanisms exhibited by real 

bacteria.  Of  a  side  conjugation,  that  is  a  local  mechanism of  horizontal  information 
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transfers within a population; of other transduction, thus a global mechanism of horizontal 

information transfers between populations. 

In a previous paper, Kubota et al. (1996) introduced VEGA addressing the possibility to 

simulate transduction, a virus-evolutionary genetic algorithm. Their authors introduced a 

virus infection operator and a virus fitness value, modeling two populations, the host 

population and virus population. The main difference between this model and our model 

is the fact that in VEGA there are two populations: a host population representing the 

candidate solutions and the virus population (initially generated from host population) 

representing a substring set of solutions. In consequence, in VEGA the underlying model 

is  the coevolution of two populations,  a  main host  population and a secondary viral 

population. In contrast, in PETRI there are several hosts or bacterial populations (or Petri 

dishes) sharing solutions via transduction. Furthermore, in VEGA viruses propagate their 

own substrings  or  chromosome segments among host  individuals  whereas  in  PETRI 

viruses propagate only the host (or bacterial) chromosome or segments between the host 

individuals.  Another  interesting  difference  is  that  in  VEGA viruses  represent  a  real 

population,  having  each  virus  a  fitness  value.  However,  in  our  model  viruses  are 

‘dummy’ agents responsible of the transduction mechanism. Finally, in VEGA the host 

population is not composed of bacteria since crossover is simulated as is usual in genetic 

algorithms,  thus  one-point  or  two-points  recombination  (vertical  gene  transfer).  In 

contrast, PETRI simulates crossover based on a conjugation operator (horizontal gene 

transfer)  or alternatively as VEGA, thus using one-point or two-points recombination 

(vertical gene transfer).

Finally, we believe that PETRI could be improved in several ways. For instance, 

including other features and options not considered in the present algorithm, parallelizing 

the algorithm to be run in a parallel computing system, or developing a routines library 
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based  on  microbial  genetics,  promoting  the  search  of  new  horizontal  gene  transfer 

algorithms in the field of Evolutionary Computation.
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Fig. 1. Transduction mechanism (bacterium DNA, white rectangle; bacteriophage DNA, 

grey rectangle). (a) Infection of a donor bacterium D with a bacteriophage. (b) Bacterial 

and  bacteriophage DNA segments  mix  inside  donor  bacterium D.  A bacterial  DNA 

segment is packed inside the bacteriophage ‘head’ (c) being transferred to a recipient 

bacterium R.  Finally,  inside the recipient  bacterium R homologous recombination or 

crossover occurs between the emigrant bacterial DNA segment and the target bacterial 

chromosome.

Fig. 2. Transduction operator. (a) Transferring a chromosome segment: (step a) donor 

bacterium D (bacterium DNA, white rectangle), (step b) recipient bacterium R (bacterium 

DNA, grey rectangle) and chromosome segment D’ from donor bacterium, (step c) one 

chromosome  results  inside  R  after  transduction.  (b)  Transferring  a  complete 

chromosome: (step a) donor bacterium D (bacterium DNA, white rectangle), (step b) 

recipient bacterium R (bacterium DNA, grey rectangle) and chromosome D’ from donor 

bacterium, (step c) one chromosome results inside R after transduction. (c) Migration and 

crossover:  (step  a)  donor  bacterium  D  (bacterium  DNA,  white  rectangle),  (step  b) 

recipient bacterium R (bacterium DNA, grey rectangle) and the migrated chromosome D’ 

from donor bacterium, (step c) two chromosomes result inside R after migration and 

crossover.

Fig. 3. Bacterial conjugation operator (Perales-Gravan and Lahoz-Beltra, 2008). Once a 

couple of chromosomes i and j (or bacteria, D=donor, R=recipient) are selected from the 

same population (or Petri dish), the gene transfer occurs from a random point  ie on the 

donor chromosome i (O=chromosome origin). Since transfer of the donor chromosome is 

almost never complete then the length l  of the strand (a copy) transferred to the recipient 

cell R is simulated applying Monte Carlo method, assuming DNA lengths exponentially 

distributed with a parameter  α  (conjugation parameter). Finally, the transferred strand 

experiences crossover, resulting a recombinant chromosome j in bacterium R.
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Fig.4. AM radio receiver. (a) Electronic circuit of a simple crystal radio showing the main 

electronic  components  to  be  optimized.  (b)  Radio  enclosure  details.  (c)  Bacterial 

chromosome with  14  genes  codifying  for  the  main  characteristics  of  an  AM radio 

receiver (from Perales-Gravan and Lahoz-Beltra, 2008).

Fig.  5.  Horizontal  gene  transfer  (HGT)  mechanisms  in  bacteria.  Conjugation  is  a 

mechanism  of  HGT  within population,  whereas  transduction  is  a  HGT  mechanism 

between populations.

Fig. 6.  Transduction experiment. The figure shows transduction from donors’ Petri dish 

(pD) and bacterium (bD) to recipients Petri dish (pR) and bacterium (bR). In the figure, P is 

the total number of Petri dishes (or sub-populations),  N is the number of bacteria (or 

population size) per Petri dish and re the number of experimental replicates. 

Fig. 7. Multiple bacterial colonies (or Petri dishes) are communicated via bacteriophages, 

cycling through generations searching for an optimum solution during G generations.

Fig. 8. SDS protocol (for details see text). 

Fig.  9.  AM  radio  receiver  experiment  with  transduction  transferring  chromosome 

segments. Note how this kind of simulation experiment is an example of specialized 

transduction, where only three possible chromosome segments could be transferred by 

bacteriophages (for explanation see text). 

Fig.  10.  Michalewicz  function  experiments  with  transduction  transferring  complete 

chromosomes. The figure shows the medians (notches) and MAF (crosses) of the average 
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fitness values obtained in fifteen different simulation experiments: Conjugation  with pt 

equal to 0% (without transduction) (1), 25% (2), 50% (3), 75% (4) and 100% (5). One-

point recombination with  pt equal to 0% (without transduction) (6), 25% (7), 50% (8), 

75%  (9)  and  100%  (10).  Two-points  recombination  with  pt equal  to  0%  (without 

transduction) (11), 25% (12), 50% (13), 75% (14) and 100% (15).

Fig.  11.  Knapsack  problem  experiments  with  transduction  transferring  complete 

chromosomes.  The  figure  shows  the  medians  (notches)  and  MAF  (crosses)  of  the 

maximum fitness values obtained in fifteen different simulation experiments: Conjugation 

with pt equal to 0% (without transduction) (1), 25% (2), 50% (3), 75% (4) and 100% (5). 

One-point recombination with pt equal to 0% (without transduction) (6), 25% (7), 50% 

(8), 75% (9) and 100% (10). Two-points recombination with  pt equal to 0% (without 

transduction) (11), 25% (12), 50% (13), 75% (14) and 100% (15).

Fig. 12. Multiple Box-and-Whisker Plot for the AM radio receiver problem.  The figure 

shows the medians (notches) and MAF (crosses) of the average fitness values obtained in 

thirty-three  different  simulation  experiments  (donor  Petri  dish  -  donor  bacterium, 

recipient Petri dish - recipient bacterium). The following experiments were carried out 

transferring  chromosome  segments  with  pt equal  to  100%:  (1)  Control  experiment 

(without transduction). (2) r-r, r-r. (3) max-max, max-max. (4) ave-ave, ave-ave. (5) roul-

roul, roul-roul. (6)  min-min,  min-min. (7)  inv roul-inv roul,  inv-roul-inv roul. (8)  roul-

roul ,  min-min. (9)  roul-roul,  ave-ave. (10)  roul-roul,  inv-roul-inv roul. (11)  roul-roul, 

max-max. (12) roul-roul,  r-r.  (13) min-min,  roul-roul. (14) ave-ave,  roul-roul. (15) inv  

roul-inv roul, roul-roul. (16) max-max, roul-roul. (17) r-r, roul-roul. (18) max-max, roul-

roul. (19 ) max-max, roul-r. (20) max-max, roul-min. (21) max-max, roul-ave. (22) max-

max,  roul-max. (23)  max-max  ,  roul-inv roul. (24)  max-max,  max-roul. (25)  max-max, 

max-r.  (26)  max-max,  max-min.  (27)  max-max,  max-ave.  (28)  max-max,  max-inv roul. 

Experiments transferring chromosome segments with  pt equal to:  (29) 75% and  max-
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max, roul-r, (30) 50% and max-max, roul-r, (31) 25% and max-max, roul-r, (32) 0% and 

max-max,  roul-r.  Finally,  experiment  (33)  was  carried  out  transferring  a  complete 

chromosome with pt equal to 100% and max-max, roul-r.

Fig. 13. Multiple Box-and-Whisker Plot for the AM radio receiver problem.  The figure 

shows the medians (notches) and MAF (crosses) of the average fitness values obtained in 

the  (a)  control  experiment  (without  transduction)  and  the  two  best  transduction 

experiments: (b) max-max, rul-r (transferring chromosome segments). (c) max-max, rul-r 

(transferring a complete chromosome).

Fig. 14. Representative performance graph for the AM radio receiver problem showing 

the Box-and-Whisker Plot per generation: (a) control experiment (without transduction) 

and the two best transduction experiments: (b) max-max, rul-r (transferring chromosome 

segments). (c) max-max, rul-r (transferring a complete chromosome).

Fig. 15. Performance graph for the AM radio receiver problem: (a) control experiment 

(without transduction) showing the mean of the average fitness per generation for the 

total  of  Petri  dishes  (MAFT).  The  performance  graph  in  the  two  best  transduction 

experiments: (b) max-max,  rul-r (transferring chromosome segments) and (c)  max-max, 

rul-r (transferring a complete chromosome) showing MAFT (thick and gray line), MAFD 

(dashed line), MAFR (peaks and valleys line) and MAF D R  (solid line) values.
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Figure 1
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Figure 2a
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Figure 2b

37

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

73
2.

1 
: P

os
te

d 
8 

S
ep

 2
00

9



Figure 2c
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Figure 3
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Figure 4a
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Figure 4b
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Figure 4c
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Figure 5
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Figure 6
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Figure 7
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Figure 8

46

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

73
2.

1 
: P

os
te

d 
8 

S
ep

 2
00

9



Figure 9
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Figure 10
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Figure 11
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Figure 12
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Figure 13
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Figure 14a
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Figure 14b
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Figure 14c
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Figure 15a
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Figure 15b
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Figure 15c
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